题目内容
研究下列算式,你会发现什么规律?1×3+1=4=22
2×4+1=9=32
3×5+1=16=42
4×6+1=25=52
…
(1)请你找出规律井计算7×9+1=
(2)用含有n的式子表示上面的规律:
(3)用找到的规律解决下面的问题:
计算:(1+
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| 3×5 |
| 1 |
| 4×6 |
| 1 |
| 9×11 |
分析:(1)(2)观察发现一个正整数乘以比这个正整数大2的数再加1就等于这个正整数加1的平方,依此得到7×9+1=64=82;含有n的式子表示的规律.
(3)由(1+
)(1+
)=
×
×
×
知,(1+
)(1+
)(1+
)(1+
)…(1+
)+…+(1+
)=
,利用此规律计算.
(3)由(1+
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 2 |
| 1 |
| 2 |
| 3 |
| 3 |
| 2 |
| 3 |
| 4 |
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| 3×5 |
| 1 |
| 4×6 |
| 1 |
| 9×11 |
| 1 |
| n(n+2) |
| 2(n+1) |
| n+2 |
解答:解:(1)7×9+1=64=82;
(2)上述算式有规律,可以用n表示为:n(n+2)+1=n2+2n+1=(n+1)2.
(3)原式=
=
.
故答案为:64,8;n(n+2)+1=(n+1)2;
.
(2)上述算式有规律,可以用n表示为:n(n+2)+1=n2+2n+1=(n+1)2.
(3)原式=
| 2(9+1) |
| 9+2 |
| 20 |
| 11 |
故答案为:64,8;n(n+2)+1=(n+1)2;
| 20 |
| 11 |
点评:本题考查了有理数的运算,是找规律题,找到(1+
)(1+
)(1+
)(1+
)…(1+
)+…+(1+
)=
×
×
×
×
×
×…×
×
=
是解题的关键.
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| 3×5 |
| 1 |
| 4×6 |
| 1 |
| 9×11 |
| 1 |
| n(n+2) |
| 2 |
| 1 |
| 2 |
| 3 |
| 3 |
| 2 |
| 3 |
| 4 |
| 4 |
| 3 |
| 4 |
| 5 |
| n+1 |
| n |
| n+1 |
| n+2 |
| 2(n+1) |
| n+2 |
练习册系列答案
相关题目