题目内容
【题目】如图,已知AB是⊙O的直径,C是⊙O上的点,连接AC、CB,过O作EO∥CB并延长EO到F,使EO=FO,连接AF并延长,AF与CB的延长线交于D.求证:AE2=FGFD.
![]()
【答案】详见解析
【解析】
如图,连结BF、BG.由△AEO≌△BFO的对应边相等得到AE=BF,然后由圆周角定理和平行线的性质易证△FGB∽△FBD,则根据该相似三角形的对应边成比例证得结论.
证明:连结BF、BG.
![]()
∵在△AEO和△BFO中,
,
∴△AEO≌△BFO(AAS),
∴AE=BF.
又∵∠ACB=90°,EF∥BC,
∴∠OFB=∠AEO=∠ACB=90°,
∴∠FBD=90°,
又∵BG⊥FD,
∴△FGB∽△FBD,
∴
=
,即
=
,
∴AE2=FGFD.
练习册系列答案
相关题目