题目内容

9.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC.
(1)求△PDE的周长;
(2)若∠A=50°,求∠BPC的度数.

分析 (1)分别利用角平分线的性质和平行线的判定,求得△DBP和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC边的长,即为8cm.
(2)根据三角形内角和定理和角平分线的性质即可求得.

解答 解:(1)∵BP、CP分别是∠ABC和∠ACB的角平分线,
∴∠ABP=∠PBD,∠ACP=∠PCE,
∵PD∥AB,PE∥AC,
∴∠ABP=∠BPD,∠ACP=∠CPE,
∴∠PBD=∠BPD,∠PCE=∠CPE,
∴BD=PD,CE=PE,
∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=8cm.
(2)∵∠A=50°,
∴∠ABC+∠ACB=130°,
∴$\frac{1}{2}$∠ABC+$\frac{1}{2}$∠ACB=65°,
∵∠PBC=$\frac{1}{2}$∠ABC,∠PCB=$\frac{1}{2}$∠ACB,
∴∠PBC+∠PCB=65°,
∴∠BPC=180°-65°=115°.

点评 此题主要考查了平行线的判定,内角和定理,角平分线的性质及等腰三角形的性质等知识点.本题的关键是将△PDE的周长就转化为BC边的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网