题目内容

如图:抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点Q(x,0)是x轴上的一动点,过Q点作x轴的垂线,交抛物线于P点、交直线BA于D点,连结OD,PB,当点Q(x,0)在x轴上运动时,求PD与x之间的函数关系式;四边形OBPD能否成为平行四边形,若能求出Q点坐标,若不能,请说明理由。
(3) 是否存在一点Q,使以PD为直径的圆与y轴相切,若存在,求出Q点的坐标;若不存在,请说明理由.
        
解:(1)设抛物线的解析式为:
把A(3,0)代入解析式求得
所以································································ 1分
设直线AB的解析式为:
求得B点的坐标为 
代入
解得:
所以··························································································· 2分
(2设存在符合条件的点Q(x,0),则P点、D点的横坐标都为x,

当PD=OB=3时,四边形OBPD成为平行四边形
,此方程无解,所以不存在点Q。
四边形OBPD不能成为平行四边形······································································· 4分
(3)假设存在一点Q,使以PD为直径的圆与y轴相切
①当时,设半径r


..............................................5分           
②当时,设半径为r


...............................................6分
③当时,设半径为r


.................................................7分所以
时都与y轴相切........9分解析:
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网