题目内容

如图,AB∥CD.BO:OC=1:4.点E、F分别是OC、OD的中点.则△OFE与△OAB的面积比为(  )
A、3:1B、4:1
C、5:1D、6:1
考点:相似三角形的判定与性质
专题:
分析:首先证明△ABO∽△FEO,由相似三角形的想可知:EF:AB=EO:BO,再证明EF=2:1即可得到△OFE与△OAB的面积比值.
解答:解:∵点E、F分别是OC、OD的中点∴EF∥CD,
又∵AB∥CD,
∴△ABO∽△FEO,
∴EF:AB=EO:BO,
又BO:OC=1:4,
∴OE=
1
2
OC,
∴OE=2OB,
∴EF:AB=2:1,
∴△OFE与△OAB的面积比为4:1,
故选B.
点评:此题考查了相似三角形的判定定理及性质和三角形中位线的性质,是中考常见题型,比较简单.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网