ÌâÄ¿ÄÚÈÝ
£¨1£©ÈôµãAÔÚº¯Êýy=
| m |
| x |
¢ÙÇómµÄÖµ¼°Ö±ÏßABµÄ½âÎöʽ£»
¢ÚÇóÈý½ÇÐÎOABµÄÃæ»ý£»
¢ÛÔÚyÖáÊÇ·ñ´æÔÚÒ»µãPʹ¡÷OCPΪµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Ö±½Óд³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¢ÜÈç¹ûÒ»¸öµãµÄºá¡¢×Ý×ø±ê¾ùΪÕûÊý£¬ÄÇôÎÒÃdzÆÕâ¸öµãÊǸñµã£®ÇëÖ±½Óд³öͼÖÐÒõÓ°²¿·Ö£¨²»°üÀ¨±ß½ç£©Ëùº¬¸ñµãµÄ×ø±ê£®
£¨2£©Èôº¯Êýy=
| m |
| x |
·ÖÎö£º£¨1£©¢Ù°ÑµãA £¨1£¬6£©´úÈ뺯Êýy=
£¨x£¾0£©Çó³ömµÄÖµ£»ÉèÖ±ÏßAB½âÎöʽΪy=kx+b£¬½«AÓëB´úÈëÇó³ökÓëbµÄÖµ£¬¼´¿ÉÈ·¶¨³öÖ±ÏßABµÄ½âÎöʽ£»
¢ÚÁ¬½ÓOA£¬OB£¬Èý½ÇÐÎAOBÃæ»ý=Èý½ÇÐÎAODÃæ»ý+ÌÝÐÎADEBÃæ»ý-Èý½ÇÐÎOBEÃæ»ý£¬Çó³ö¼´¿É£»
¢ÛÈçͼËùʾ£¬·ÖËÄÖÖÇé¿ö¿¼ÂÇ£ºµ±OP1=P1C=1ʱ£¬¡÷OP1CΪµÈÑüÈý½ÇÐΣ»µ±CP2=OC=
ʱ£¬¡÷OP2CΪµÈÑüÈý½ÇÐΣ»µ±OP3=OC=
ʱ£¬¡÷OP3CΪµÈÑüÈý½ÇÐΣ»µ±OP4=OC=
ʱ£¬¡÷OP4CΪµÈÑüÈý½ÇÐΣ¬·Ö±ðÇó³ö¶ÔÓ¦PµÄ×ø±ê¼´¿É£»
¢ÜÓÉͼÏóÕÒ³öÂú×ãÌâÒâµÄ¸ñµã×ø±ê¼´¿É£»
£¨2£©×¥×¡Á½¸ö¹Ø¼üµã£¬Ò»ÊÇ·´±ÈÀýº¯ÊýͼÏó¹ýABÖеãʱ£¬Ò»ÊÇ·´±ÈÀýº¯ÊýͼÏó¹ýCµãʱ£¬·Ö±ðÇó³ö¶ÔÓ¦mµÄÖµ£¬¼´¿ÉÈ·¶¨³öÂú×ãÌâÒâmµÄ·¶Î§£®
| m |
| x |
¢ÚÁ¬½ÓOA£¬OB£¬Èý½ÇÐÎAOBÃæ»ý=Èý½ÇÐÎAODÃæ»ý+ÌÝÐÎADEBÃæ»ý-Èý½ÇÐÎOBEÃæ»ý£¬Çó³ö¼´¿É£»
¢ÛÈçͼËùʾ£¬·ÖËÄÖÖÇé¿ö¿¼ÂÇ£ºµ±OP1=P1C=1ʱ£¬¡÷OP1CΪµÈÑüÈý½ÇÐΣ»µ±CP2=OC=
| 2 |
| 2 |
| 2 |
¢ÜÓÉͼÏóÕÒ³öÂú×ãÌâÒâµÄ¸ñµã×ø±ê¼´¿É£»
£¨2£©×¥×¡Á½¸ö¹Ø¼üµã£¬Ò»ÊÇ·´±ÈÀýº¯ÊýͼÏó¹ýABÖеãʱ£¬Ò»ÊÇ·´±ÈÀýº¯ÊýͼÏó¹ýCµãʱ£¬·Ö±ðÇó³ö¶ÔÓ¦mµÄÖµ£¬¼´¿ÉÈ·¶¨³öÂú×ãÌâÒâmµÄ·¶Î§£®
½â´ð£º
½â£º£¨1£©¢Ù½«A£¨1£¬6£©´úÈë·´±ÈÀý½âÎöʽµÃ£º6=
£¬¼´m=6£»
ÉèÖ±ÏßAB½âÎöʽΪy=kx+b£¬
½«A£¨1£¬6£©£¬B£¨6£¬1£©´úÈëµÃ£º
£¬
½âµÃ£º
£¬
ÔòÖ±ÏßABµÄ½âÎöʽΪy=-x+7£»
¢ÚÁ¬½ÓOA£¬OB£¬ÓÉÌâÒâµÃ£ºAD=OE=6£¬OD=BE=1£¬DE=OE-OD=5£¬
ÔòS¡÷OAB=S¡÷AOD+SÌÝÐÎADEB-S¡÷BEO
=
¡Á1¡Á6+
¡Á5¡Á£¨1+6£©-
¡Á1¡Á6
=
£»
¢ÛÈçͼËùʾ£¬
µ±OP1=P1C=1ʱ£¬¡÷OP1CΪµÈÑüÈý½ÇÐΣ¬´ËʱP1£¨0£¬1£©£»
µ±CP2=OC=
ʱ£¬¡÷OP2CΪµÈÑüÈý½ÇÐΣ¬´ËʱP2£¨0£¬2£©£»
µ±OP3=OC=
ʱ£¬¡÷OP3CΪµÈÑüÈý½ÇÐΣ¬´ËʱP3£¨0£¬
£©£»
µ±OP4=OC=
ʱ£¬¡÷OP4CΪµÈÑüÈý½ÇÐΣ¬´ËʱP4£¨0£¬-
£©£»
×ÛÉÏ£¬PµÄ×ø±êΪ£¨0£¬1£©»ò£¨0£¬2£©»ò£¨0£¬
£©»ò£¨0£¬-
£©£»
¢Ü¸ù¾ÝͼÐε㺸ñµã×ø±ê£¨2£¬4£©£¬£¨3£¬3£©£¬£¨4£¬2£©£»
£¨2£©µ±Ë«ÇúÏß¾¹ýµãC£¨1£¬1£©Ê±£¬m=1£»
µ±Ë«ÇúÏß¾¹ýABÖе㣨
£¬
£©Ê±£¬m=
£¬
Ôòº¯Êýy=
£¨x£¾0£©µÄͼÏóÓë¡÷ABCÓй«¹²µãʱmµÄȡֵ·¶Î§ÊÇ1¡Üm¡Ü
£®
| m |
| 1 |
ÉèÖ±ÏßAB½âÎöʽΪy=kx+b£¬
½«A£¨1£¬6£©£¬B£¨6£¬1£©´úÈëµÃ£º
|
½âµÃ£º
|
ÔòÖ±ÏßABµÄ½âÎöʽΪy=-x+7£»
¢ÚÁ¬½ÓOA£¬OB£¬ÓÉÌâÒâµÃ£ºAD=OE=6£¬OD=BE=1£¬DE=OE-OD=5£¬
ÔòS¡÷OAB=S¡÷AOD+SÌÝÐÎADEB-S¡÷BEO
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 35 |
| 2 |
¢ÛÈçͼËùʾ£¬
µ±OP1=P1C=1ʱ£¬¡÷OP1CΪµÈÑüÈý½ÇÐΣ¬´ËʱP1£¨0£¬1£©£»
µ±CP2=OC=
| 2 |
µ±OP3=OC=
| 2 |
| 2 |
µ±OP4=OC=
| 2 |
| 2 |
×ÛÉÏ£¬PµÄ×ø±êΪ£¨0£¬1£©»ò£¨0£¬2£©»ò£¨0£¬
| 2 |
| 2 |
¢Ü¸ù¾ÝͼÐε㺸ñµã×ø±ê£¨2£¬4£©£¬£¨3£¬3£©£¬£¨4£¬2£©£»
£¨2£©µ±Ë«ÇúÏß¾¹ýµãC£¨1£¬1£©Ê±£¬m=1£»
µ±Ë«ÇúÏß¾¹ýABÖе㣨
| 7 |
| 2 |
| 7 |
| 2 |
| 49 |
| 4 |
Ôòº¯Êýy=
| m |
| x |
| 49 |
| 4 |
µãÆÀ£º´ËÌâÊôÓÚ·´±ÈÀýº¯Êý×ÛºÏÌâ£¬Éæ¼°µÄ֪ʶÓУº×ø±êÓëͼÐÎÐÔÖÊ£¬µÈÑüÈý½ÇÐεÄÐÔÖÊ£¬·´±ÈÀýº¯ÊýµÄͼÏóÓëÐÔÖÊ£¬´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬ÀûÓÃÁË·ÖÀàÌÖÂÛ¼°ÊýÐνáºÏµÄ˼Ï룬ÊÇÒ»µÀÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿