题目内容
已知如图,点P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.求证:AP=EF.
![]()
证明:如图,连接PC,
∵PE⊥DC,PF⊥BC,四边形ABCD是正方形,
∴∠PEC=∠PFC=∠ECF=90°,
∴四边形PECF为矩形,
∴PC=EF,
又∵P为BD上任意一点,
∴PA、PC关于BD对称,
可以得出,PA=PC,所以EF=AP
练习册系列答案
相关题目
题目内容
已知如图,点P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.求证:AP=EF.
![]()
证明:如图,连接PC,
∵PE⊥DC,PF⊥BC,四边形ABCD是正方形,
∴∠PEC=∠PFC=∠ECF=90°,
∴四边形PECF为矩形,
∴PC=EF,
又∵P为BD上任意一点,
∴PA、PC关于BD对称,
可以得出,PA=PC,所以EF=AP