题目内容
如图,线段AP⊥PB,而且AP=2,PB=12,点C1,C2在线段PB上,满足PC2=1.5,BC1=6.设m=
+
,n=
+
,那么( )

| AC2 |
| 3 |
| C2B |
| 5 |
| AC1 |
| 3 |
| C1B |
| 5 |
| A.m>n | B.m=n | C.m+n=5 | D.m<n |
∵线段AP⊥PB,且AP=2,PB=12,PC2=1.5,BC1=6.
故根据勾股定理可求出:AC2=2.5,BC2=10.5,AC1=2
,BC1=6.
∴m=
+
=
<n=
+
=
.
故选D.
故根据勾股定理可求出:AC2=2.5,BC2=10.5,AC1=2
| 10 |
∴m=
| 2.5 |
| 3 |
| 10.5 |
| 5 |
| 44 |
| 15 |
2
| ||
| 3 |
| 6 |
| 5 |
20
| ||
| 15 |
故选D.
练习册系列答案
相关题目
| AC2 |
| 3 |
| C2B |
| 5 |
| AC1 |
| 3 |
| C1B |
| 5 |
| A、m>n | B、m=n |
| C、m+n=5 | D、m<n |