题目内容
已知是二元一次方程的解,则k的值是( )
A. 2 B. ﹣2 C. 3 D. ﹣3
已知△ABC中,AC=6cm,BC=8cm,AB=10cm, CD为AB边上的高.动点P从点A出发,沿着△ABC的三条边逆时针走一圈回到A点,速度为2cm/s,设运动时间为ts.
(1) 求CD的长;
(2) t为何值时,△ACP为等腰三角形?
(3) 若M为BC上一动点,N为AB上一动点,是否存在M,N使得AM+MN的值最小,如果有请尺规作出图形(不必求最小值),如果没有请说明理由.
如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于( )
A. 25° B. 30° C. 35° D. 40°
一个多边形的每一个外角都相等,且都为36°,求多边形的边数及内角和.
一个三位数,十位上的数字比个位上的数字大2,百位上的数字比个位上的数字小2,而这三个数位上的数字和的17倍等于这个三位数,如果设个位数字为x,列方程为_______________
(8分)如图,平面直角坐标系xOy中,直线AC分别交坐标轴于A,C(8,0)两点,AB∥x轴,B(6,4).
(1)求过B,C两点的抛物线y=ax2+bx+4的表达式;
(2)点P从C点出发以每秒1个单位的速度沿线段CO向O点运动,同时点Q从A点出发以相同的速度沿线段AB向B点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.当t为何值时,四边形BCPQ为平行四边形;
(3)若点M为直线AC上方的抛物线上一动点,当点M运动到什么位置时,△AMC的面积最大?求出此时M点的坐标和△AMC的最大面积.
(6分)正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
(1)作出△ABC绕点A逆时针旋转90°的△AB1C1,再作出△AB1C1关于原点O成中心对称的△A1B2C2.
(2)点B1的坐标为 ,点C2的坐标为 .
关于x的一元二次方程x2+ax﹣1=0的根的情况是( )
A. 没有实数根 B. 只有一个实数根
C. 有两个相等的实数根 D. 有两个不相等的实数根
分式方程的解是_______________.