题目内容
(1)在图中作出△ABC关于x轴对称图形△A1B1C1
(2)在图中作出△ABC关于y轴对称图形△A2B2C2.
△A1B1C1和△A2B2C2的各顶点坐标分别为:
A1(
(2)根据网格结构找出点A、B、C关于y轴对称点A2、B2、C2的位置,然后顺次连接即可,然后根据平面直角坐标系写出各点的坐标即可.
(2)如图所示,△A2B2C2即为所求作的△ABC关于y轴对称图形;
A1(-3,1),B1(-4,3),C1(-2,5);
A2(3,-1),B2(4,-3),C2(2,-5).
故答案为:(-3,1),B1(-4,3),C1(-2,5);(3,-1),B2(4,-3),C2(2,-5).
问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.
![]()
解:由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2.
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类比应用
1.已知:多项式M =2a2-a+1 ,N =a2-2a .试比较M与N的大小.
2.已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边
满足a <b < c ,现将△ABC 补成长方形,使得△ABC的两个顶
点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上。
①这样的长方形可以画 个;
②所画的长方形中哪个周长最小?为什么?
![]()
拓展延伸
已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?
![]()