题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是 . ![]()
【答案】5
【解析】解:由题意EF是线段AB的垂直平分线,
∴AD=DB,
Rt△ABC中,∵∠ACB=90°,BC=6,AC=8,
∴AB=
=
=10,
∵AD=DB,∠ACB=90°,
∴CD=
AB=5.
所以答案是5.![]()
【考点精析】解答此题的关键在于理解直角三角形斜边上的中线的相关知识,掌握直角三角形斜边上的中线等于斜边的一半,以及对勾股定理的概念的理解,了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.
练习册系列答案
相关题目
【题目】甲、乙、并三位同学参加数学综合素质测试
各项成绩如下
单位:分
同学 成绩 | 数与代数 | 图形与几何 | 统计与概率 | 综合与实践 |
甲 | 90 | 93 | 89 | 90 |
乙 | 94 | 92 | 94 | 86 |
丙 | 92 | 91 | 90 | 88 |
甲、乙、丙三位同学成绩的中位数分别为______;
如果数与代数、图形与几何、统计与概率、综合与实践的成绩按3:3:2:2计算,分别计算甲、乙、丙三位同学的数学综合素质测试成绩,从成绩看,应推荐谁参加更高级别的比赛?