题目内容
(1)求证:BE=DF;
(2)当
| DF |
| FC |
| AD |
| DF |
分析:(1)证得△ABE与△AFD全等后即可证得结论;
(2))利用
=
得到
=
=
,从而根据平行线分线段成比例定理证得FG∥BC,进而得到∠DGF=∠DBC=∠BDC,最后证得BE=GF,利用一组对边平行且相等即可判定平行四边形.
(2))利用
| DF |
| FC |
| AD |
| DF |
| FD |
| FC |
| AD |
| BE |
| DG |
| GB |
解答:证明:(1)∵四边形ABCD是菱形,
∴AB=AD,∠ABC=∠ADF,
∵∠BAF=∠DAE,
∴∠BAF-∠EAF=∠DAE-∠EAF,
即:∠BAE=∠DAF,
∴△BAE≌△DAF
∴BE=DF;
(2)∵四边形ABCD是菱形,
∴AD∥BC,
∴△ADG∽△EBG
∴
=
又∵BE=DF,
=
∴
=
=
∴GF∥BC (平行线分线段成比例)
∴∠DGF=∠DBC
∵BC=CD
∴∠BDC=∠DBC=∠DGF
∴GF=DF=BE
∵GF∥BC,GF=BE
∴四边形BEFG是平行四边形
∴AB=AD,∠ABC=∠ADF,
∵∠BAF=∠DAE,
∴∠BAF-∠EAF=∠DAE-∠EAF,
即:∠BAE=∠DAF,
∴△BAE≌△DAF
∴BE=DF;
(2)∵四边形ABCD是菱形,
∴AD∥BC,
∴△ADG∽△EBG
∴
| AD |
| BE |
| DG |
| BG |
又∵BE=DF,
| DF |
| FC |
| AD |
| DF |
∴
| DG |
| BG |
| AD |
| DF |
| DF |
| FC |
∴GF∥BC (平行线分线段成比例)
∴∠DGF=∠DBC
∵BC=CD
∴∠BDC=∠DBC=∠DGF
∴GF=DF=BE
∵GF∥BC,GF=BE
∴四边形BEFG是平行四边形
点评:本题考查了平行线分线段成比例定理及平行四边形的判定与性质,特别是第二问如何利用已知比例式进行转化是解决此题的关键.
练习册系列答案
相关题目