题目内容
(3分)不等式组的整数解是 .
如图,由几个相同的小正方体搭成的一个几何体,它的俯视图为( )
A. B. C. D.
(3分)如图,点A(m,2),B(5,n)在函数(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为 .
(12分)已知抛物线C1:()经过点A(﹣1,0)和B(3,0).
(1)求抛物线C1的解析式,并写出其顶点C的坐标;
(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标;
(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:
①tan∠ENM的值如何变化?请说明理由;
②点M到达点C时,直接写出点P经过的路线长.
(6分)如图,CA=CD,∠B=∠E,∠BCE=∠ACD.求证:AB=DE.
(3分)如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是( )
(3分)函数中,自变量x的取值范围是( )
A.x>1 B.x≥1 C.x<1 D.x≤1
(4分)一个多边形的每个外角都等于60°,则这个多边形的边数为( )
A.8 B.7 C.6 D.5
(12分)校文艺部在全校范围内随机抽取一部分同学,对同学们喜爱的四种“明星真人秀”节目进行问卷调查(每位同学只能选择一种最喜爱的节目),并将调查结果整理后分别绘制成如图所示的不完整的扇形统计图和条形统计图).
请根据所给信息回答下列问题:
(1)本次问卷调查共调查了多少名学生?
(2)请将两幅统计图补充完整;
(3)若该校有1500名学生,据此估计有多少名学生最喜爱《奔跑吧兄弟》节目.