题目内容

如图,弦BC经过圆心D,AD⊥BC,AC交⊙D于E,AD交⊙D于M,BE交AD于N.求证:△BND∽△ABD.
分析:首先证明△ABD≌△ACD,由全等三角形的性质可知:∠ABD=∠ACD因为BC是直径,所以∠BEC=90°再证明∠BND=∠ACD即可证明△ABD∽△ACD.
解答:证明:∵AD⊥BC,
∴∠ADB=∠ADC=90°,
∵在△ADB和△ADC中,
AD=AD
∠ADB=∠ADC=90°
DB=DC

∴△ABD≌△ACD(SAS),
∴∠ABD=∠ACD,
∵BC是直径,
∴∠BEC=90°,
∵∠BND=∠ANE=90°-∠DAC=∠ACD,
∴△ABD∽△ACD.
点评:本题考查了全等三角形的判定和性质、圆周角定理以及讨论和相似三角形的判定,题目难度不大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网