题目内容
(10分)先化简,再求值:,请选取一个适当的x的数值代入求值.
(3分)计算:= .
(8分)如图所示,小明家小区空地上有两颗笔直的树CD、EF.一天,他在A处测得树顶D的仰角∠DAC=30°,在B处测得树顶F的仰角∠FBE=45°,线段BF恰好经过树顶D.已知A、B两处的距离为2米,两棵树之间的距离CE=3米,A.B、C、E四点在一条直线上,求树EF的高度.(≈1.7,≈1.4,结果保留一位小数)
(3分)把不等式组的解集表示在数轴上,正确的是( )
A. B. C. D.
(12分)某商场试销一种商品,成本为每件200元,规定试销期间销售单价不低于成本单价,且获利不得高于50%,一段时间后,发现销售量y(件)与销售单价x(元)之间的函数关系如下表:
(1)请根据表格中所给数据,求出y关于x的函数关系式;
(2)设商场所获利润为w元,将商品销售单价定为多少时,才能使所获利润最大?最大利润是多少?
(3分)某校组织“书香校园”读书活动,某班图书角现有文学书18本,科普书9本,人物传记12本,军事书6本,小明随机抽取一本,恰好是人物传记的概率是 .
(3分)如图,直线与(且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式的解集为( )
A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤3
(3分)如图,在A处看建筑物CD的顶端D的仰角为α,且tanα=0.7,向前行进3米到达B处,从B处看D的仰角为45°(图中各点均在同一平面内,A.B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为 米.
(12分)如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.
(1)求MP的值;
(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?
(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)