题目内容

20.如图,△ABC是等边三角形,D、E分别为BC、AC上一点,且BD=CE,AD交BE于F.
(1)求证:AD=BE;
(2)若∠CFE=30°,求$\frac{BD}{CD}$的值.

分析 (1)根据等边三角形性质得出AB=BC,∠ABD=∠C=60°,再根据SAS可得△ABD≌△BCE,根据全等三角形的性质得到结论;
(2)由△ABD≌△BCE,可证得∠BAD=∠CBE,进一步得到∠EAF=∠ABE,然后根据有两角对应相等的三角形相似,即可得△AEF∽△ABE.

解答 解:(1)∵△ABC为等边三角形,
∴AB=BC,∠ABD=∠C=60°,
在△ABD和△BCE中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABD=∠C}\\{BD=CE}\end{array}\right.$,
∴△ABD≌△BCE(SAS),
∴AD=BE;
(2)如图,连接DE,

由(1)得:∠1=∠2,
∴∠AFE=∠1+∠3=∠2+∠3=60°,
∵∠ACD=60°,
∴∠AFE=∠ACD,
∵∠FAE=∠CAD,
∴∵△AFE∽△ACD,
∴$\frac{AF}{AC}=\frac{AE}{AD}$,
∴$\frac{AF}{AE}=\frac{AC}{AD}$,
∵∠FAC=∠EAD,
∴△FAC∽△EAD,
∴∠AFC=∠AED,
∵∠AFC=∠AFE+∠CFE=60°+30°=90°,
∴∠AED=90°,
∴CED=90°,
∵∠DCE=60°,
∴∠CDE=30°,
∴CE=$\frac{1}{2}$CD,
∵BD=CE,
∴BD=$\frac{1}{2}$CD,
∴$\frac{BD}{CD}=\frac{1}{2}$.

点评 本题考查了全等三角形的判定和性质,关键是根据等边三角形的性质:等边三角形的三个内角都相等,且都等于60°;三条边相等分析.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网