题目内容
【题目】如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于( )
![]()
A.
B.
C.3 D.4
【答案】A
【解析】
试题分析:此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.
过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=
,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出
=
,
=
,代入求出BF和CM,相加即可求出答案.
过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,
∵BF⊥OA,DE⊥OA,CM⊥OA,
∴BF∥DE∥CM.
∵OD=AD=3,DE⊥OA,
∴OE=EA=
OA=2,
由勾股定理得:DE=
=5,设P(2x,0),根据二次函数的对称性得出OF=PF=x,
∵BF∥DE∥CM,
∴△OBF∽△ODE,△ACM∽△ADE,
∴
=
,
=
,
∵AM=PM=
(OA-OP)=
(4-2x)=2-x,
即
=
,
=
,
解得:BF=
x,CM=
-
x,
∴BF+CM=
.
故选A.
![]()
【题目】以下是八(1)班学生身高的统计表和扇形统计图,请回答以下问题.
八(1)班学生身高统计表
组别 | 身高(单位:米) | 人数 |
第一组 | 1.85以上 | 1 |
第二组 |
| |
第三组 |
| 19 |
第四组 |
| |
第五组 | 1.55以下 | 8 |
![]()
(1)求出统计表和统计图缺的数据.
(2)八(1)班学生身高这组数据的中位数落在第几组?
(3)如果现在八(1)班学生的平均身高是1.63
,已确定新学期班级转来两名新同学,新同学的身高分别是1.54
和1.77
,那么这组新数据的中位数落在第几组?