题目内容
在同一直角坐标系中,函数y=-kx+k与y= (k≠0)的图象大致是( )
A. B. C. D.
计算:(1)992-102×98;
(2)[x(x2y2-xy)-y(x2-x3y)]÷x2y.
【答案】(1)-195(2)2xy-2
【解析】试题分析:(1)利用平方差公式,完全平方公式简便计算.
(2)提取公因式,化简.
试题解析:
(1)原式=(100-1)2-(100+2)×(100-2)
=(1002-200+1)-(1002-4)=-200+5=-195.
(2)原式=[x2y(xy-1)-x2y(1-xy)]÷x2y
=2x2y(xy-1)÷x2y=2(xy-1)=2xy-2.
【题型】解答题【结束】21
(1)先化简,再求值:a(a-2b)+(a+b)2,其中a=-1,b=;
(2)若x2-5x=3,求(x-1)(2x-1)-(x+1)2+1的值.
如图:在△ABC和△DCE是全等的三角形,∠ACB=90°,AC=6,BC=8,点F是ED的中点,点P是线段AB上动点,则线段PF最小时的长度________________.
定义[p,q]为一次函数y=px+q的特征数,若特征数是[2,k-2]的一次函数为正比例函数,则k的值是______.
关于函数y=-x-2的图象,有如下说法:①图象过点(0,-2);②图象与x轴的交点是(-2,0);③从图象知y随x增大而增大;④图象不经过第一象限;⑤图象是与y=-x平行的直线.其中正确的说法有( )
A. 2种 B. 3种 C. 4种 D. 5种
某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:
(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.
(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
已知反比例函数y=,当x<-1时,y的取值范围为________.
在△AOB中,OA=OB=8,∠AOB=90°,矩形CDEF的顶点C、D、F分别在边AO、OB、AB上。
(1)如图1,若C、D恰好是边AO、OB的中点,则此时矩形CDEF的面积为_________;
(2)如图2,若=,求矩形CDEF面积的最大值。
一个等腰三角形一边长为2,另一边长为5,这个三角形第三边的长是_________