题目内容
我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.
我选择第______个方程.
如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2018的坐标为_____.
如图,一次函数分别交y轴、x 轴于A、B两点,抛物线过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于点M,交这个抛物线于点N.求当t 取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.
不等式组的解集在数轴上表示为( )
A. B.
C. D.
如图,分别延长?ABCD的边到,使,连接EF,分别交于,连结求证:.
如果一个n边形的内角和等于它的外角和的3倍,则______.
用配方法将方程变形,正确的是
A. B. C. D.
下列图标是中心对称图形的是( )
A. B.
C. D.
先阅读,再解题.
例题:解一元二次不等式 (x+3)(x-3)>0
解:因为 (x+3)(x-3)>0.
由有理数的乘法法则“两数相乘,同号得正”,
所以有 或
解不等式组①,得x>3,
解不等式组②,得x<-3.
故(x+3)(x-3)>0的解集为x>3或x<-3.
即一元二次不等式(x+3)(x-3)>0的解集为x>3或x<-3.
问题:求不等式的解集.