题目内容
分析:作FM∥BC交AE于点M,则根据△BEH∽△FMH,利用BF表示出HF的长度,作DN∥AC交BF于点N,则△BDN∽△BCF且△DNG∽△AFG,依据△BDN∽△BCF可以用BF表示出BN的长,然后依据△DNG∽△AFG表示出NG的长,则BG,GM,HF都可以利用BF表示出来,则比值即可求解.
解答:
解:设BC=6a,则BD=DE=EC=2a,作FM∥BC交AE于点M,
∵F是AC的中点,
∴MF=
EC=a,
∵FM∥BC,
∴△BEH∽△FMH,
∴
=
=
=
,则HF=
BF,
作DN∥AC交BF于点N,设AC=2b,则AF=CF=b,
∴△BDN∽△BCF,
∴
=
=
=
=
,
∴DN=
CF=
b,BN=
BF,
∵DN∥AC,
∴△DNG∽△AFG,
∴
=
=
=
,
∴NG=
GF,即NG=
NF=
(BF-BN)=
(BF-
BF)=
BF,
∴BG=
GF+
GF=
BF,
∴GM=BF-BG-HF=BF-
BF-
BF=
BF,
∴BG:GH:HF=
BF:
BF:
BF=5:3:2.
故选C.
∵F是AC的中点,
∴MF=
| 1 |
| 2 |
∵FM∥BC,
∴△BEH∽△FMH,
∴
| HF |
| BH |
| MF |
| BE |
| a |
| 4a |
| 1 |
| 4 |
| 1 |
| 5 |
作DN∥AC交BF于点N,设AC=2b,则AF=CF=b,
∴△BDN∽△BCF,
∴
| BD |
| BC |
| ND |
| CF |
| BN |
| BF |
| 2a |
| 6a |
| 1 |
| 3 |
∴DN=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∵DN∥AC,
∴△DNG∽△AFG,
∴
| NG |
| GF |
| DN |
| AF |
| ||
| b |
| 1 |
| 3 |
∴NG=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 6 |
∴BG=
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 2 |
∴GM=BF-BG-HF=BF-
| 1 |
| 2 |
| 1 |
| 5 |
| 3 |
| 10 |
∴BG:GH:HF=
| 1 |
| 2 |
| 3 |
| 10 |
| 1 |
| 5 |
故选C.
点评:本题考查了三角形的形似的判定与性质,正确利用相似三角形的性质,利用BF把BG,GM,HF表示出来是关键.
练习册系列答案
相关题目