题目内容
【题目】某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:
销售单价 | … | 30 | 40 | 50 | 60 | … |
每天销售量 | … | 500 | 400 | 300 | 200 | … |
(1)研究发现,每天销售量
与单价
满足一次函数关系,求出
与
的关系式;
(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?
【答案】(1)y=﹣10x+800;(2)单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元
【解析】
(1)直接利用待定系数法求解可得;
(2)根据“总利润
单件利润
销售量”可得关于
的一元二次方程,解之即可得.
解:(1)设y=kx+b,
根据题意可得
,
解得:
,
每天销售量
与单价
的函数关系为:y=﹣10x+800,
(2)根据题意,得:(x﹣20)(﹣10x+800)=8000,
整理,得:x2﹣100x+2400=0,解得:x1=40,x2=60,
∵销售单价最高不能超过45元/件,
∴x=40,
答:销售单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元.
【题目】交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量
(辆
小时)指单位时间内通过道路指定断面的车辆数;速度
(千米
小时)指通过道路指定断面的车辆速度,密度
(辆
千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量
与速度
之间关系的部分数据如下表:
速度v(千米/小时) |
|
|
|
|
|
|
|
|
流量q(辆/小时) |
|
|
|
|
|
|
|
|
(1)根据上表信息,下列三个函数关系式中,刻画
,
关系最准确是_____________________.(只填上正确答案的序号)
①
;②
;③![]()
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?
(3)已知
,
,
满足
,请结合(1)中选取的函数关系式继续解决下列问题:市交通运行监控平台显示,当
时道路出现轻度拥堵.试分析当车流密度
在什么范围时,该路段将出现轻度拥堵?