题目内容
【题目】如图,AB是⊙O的直径,C为⊙O上一点,经过点C的直线与AB的延长线交于点D,连接AC,BC,∠BCD=∠CAB.E是⊙O上一点,弧CB=弧CE,连接AE并延长与DC的延长线交于点F.
(1)求证:DC是⊙O的切线;
(2)若⊙O的半径为3,sin∠D=
,求线段AF的长.
![]()
【答案】(1)见解析;(2)
.
【解析】
(1)连接OC,BC,由AB是⊙O的直径,得到∠ACB=90°,即∠1+∠3=90°.根据等腰三角形的性质得到∠1=∠2.得到∠DCB+∠3=90°.于是得到结论;
(2)根据三角函数的定义得到OD=5,AD=8.根据弧CB=弧CE得到∠2=∠4.推出OC∥AF.根据相似三角形的性质即可得到结论.
![]()
(1)证明:连接OC,BC,
∵AB是⊙O的直径,
∴∠ACB=90°,即∠1+∠3=90°.
∵OA=OC,
∴∠1=∠2.
∵∠DCB=∠BAC=∠1.
∴∠DCB+∠3=90°.
∴OC⊥DF.
∴DF是⊙O的切线;
(2)解:在Rt△OCD中,OC=3,sinD=
.
∴OD=5,AD=8.
∵弧CB=弧CE,
∴∠2=∠4.
∴∠1=∠4.
∴OC∥AF.
∴△DOC∽△DAF.
∴
=
.
∴AF=
.
练习册系列答案
相关题目