题目内容
(1)化简并求值:(| y-2 |
| y2+2y |
| y-1 |
| y2+4y+4 |
| y-4 |
| y+2 |
(2)已知a=2-
| 3 |
| 1-2a+a2 |
| a-1 |
| ||
| a2-a |
| 1 |
| a |
(3)计算:
| 50 |
| 8 |
| 2 |
| 5 |
|
(
|
(4)解分式方程:
| 2 |
| 1-x |
| x |
| 3-x |
| 2x-1 |
| (x-1)(x-3) |
分析:(1)(2)先把原式化简,化为最简后再代数求值即可;
(3)先把各分式化简,化为最简后再按照从左到右的顺序依次计算即可.
(4)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
(3)先把各分式化简,化为最简后再按照从左到右的顺序依次计算即可.
(4)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
解答:解:(1)原式=(
-
)÷
=
÷
=
由y2+2y-1=0得y2+2y=1.
∴原式=1;
(2)原式=
-
-
=a-1,
当a=2-
时,原式=1-
;
(3)原式=5
-(2
+
)+3-
=5
-2
-
+3-
=
+3;
(4)原方程可化为:
+
+
=1,
+
+
=1
=1
解得:x=-
,
检验:把x=-
代入(x-1)(x-3)≠0,
∴原方程的解为x=-
.
| y-2 |
| y(y+2) |
| y-1 |
| (y+2)2 |
| y-4 |
| y+2 |
=
| y-4 |
| y(y+2)2 |
| y-4 |
| y+2 |
=
| 1 |
| y2+2y |
由y2+2y-1=0得y2+2y=1.
∴原式=1;
(2)原式=
| (a-1)2 |
| a-1 |
| ||
| a(a-1) |
| 1 |
| a |
当a=2-
| 3 |
| 3 |
(3)原式=5
| 2 |
| 2 |
| ||
| 5 |
| 2 |
=5
| 2 |
| 2 |
| ||
| 5 |
| 2 |
=
| 9 |
| 5 |
| 2 |
(4)原方程可化为:
| -2 |
| x-1 |
| x |
| x-3 |
| 2x-1 |
| (x-1)(x-3) |
| -2(x-3) |
| (x-1)(x-3) |
| x(x-1) |
| (x-1)(x-3) |
| 2x-1 |
| (x-1)(x-3) |
| x2-x+5 |
| x2-4x-3 |
解得:x=-
| 8 |
| 3 |
检验:把x=-
| 8 |
| 3 |
∴原方程的解为x=-
| 8 |
| 3 |
点评:本题考查了分式的化简求值、二次根式的化简求值以及解分式方程,此题综合性较强,计算是比较繁琐,一定要细心才行.
练习册系列答案
相关题目