题目内容
函数的自变量的取值范围是 ( )
A. B. C. D.
(1)观察与发现,小明将三角形纸片△ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为AEF是等腰三角形,你同意吗?请说明理由.
(2)实践与运用:将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.
下列立体图形中,有五个面的是 ( ).
A.四棱锥 B.五棱锥 C.四棱柱 D.五棱柱
如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为______.
实数4的算术平方根是______.
在△ABC中,CA=CB,在△AED中, DA=DE,点D、E分别在CA、AB上.
(1)如图①,若∠ACB=∠ADE=90°,则CD与BE的数量关系是 ;
(2)若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图②所示的位置,求CD与BE的数量关系;
(3)若∠ACB=∠ADE=2α(0°< α < 90°),将△AED绕点A旋转至如图③所示的位置,探究线段CD与BE的数量关系,并加以证明(用含α的式子表示).
如图,正方形ABCD的对角线相交于点O,∠CAB的平分线交BD、BC于点E、F,作BH⊥AF于点H,分别交AC、CD于点G、P,连结GE、GF.
(1)求证:△0AE≌△0BG;
(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由;
(3)试求:的值(结果保留根号).
若,则( )
A. B. C. D.
如图,沿一条母线将圆锥侧面剪开并展平,得到一个圆心角θ=120°的扇形,若圆锥底面圆半径r=2cm,则该圆锥的母线l的长为______.