题目内容
如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧的长度为 .
如图所示,已知点C(-3,m),点D(m-3,0).直线CD交y轴于点A.作CE与X轴垂直,垂足为E,以点B(-1,0)为顶点的抛物线恰好经过点A、C.
(1)则∠CDE= ;
(2)求抛物线对应的函数关系式;
(3)设P(x,y)为抛物线上一点(其中-3<x<1-或-1<x<1,连结BP并延长交直线CE于点N,记N点的纵坐标为yN,连结CP并延长交X轴于点M.
①试证明:EM•(EC+yN)为定值;
②试判断EM+EC+yN是否有最小值,并说明理由
如图,将边长为6的正方形ABCD绕点C顺时针旋转30°得到正方形A′B′CD′,则点A的旋转路径长为 .(结果保留π)
已知二次函数y=x2-ax-2a2(a为常数,且a≠0).
(1)证明该二次函数的图象与x轴的正半轴、负半轴各有一个交点;
(2)若该二次函数的图象与y轴的交点坐标为(0,-2),试求该函数图象的顶点坐标.
化简:(1+)÷.
使式子1+有意义的x的取值范围是 .
在下列实数中,无理数是( )
A、sin45° B、 C、0.3 D、3.14
下列说法中,完全正确是( )
A.从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性较大
B.抛掷一枚均匀的硬币,正面一定朝上
C.三条任意长的线段都可以组成一个三角形
D.打开电视机,正在转播足球比赛
已知一元二次方程ax2+2x-=0有唯一的解,求的值.