题目内容
如图,已知抛物线y=ax2+bx﹣3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为![]()
.设⊙M与y轴交于D,抛物线的顶点为E.
(1)求m的值及抛物线的解析式;
(2)设∠DBC=α,∠CBE=β,求sin(α﹣β)的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.
![]()
![]()
【考点】二次函数综合题.
【专题】压轴题;开放型.
【分析】(1)根据题意与图象可得点C的坐标,根据圆的性质可得点B的坐标,根据对称轴方程与点B的坐标即可求得函数的解析式;
(2)由抛物线的解析式可求得点A,E,B,C,D的坐标,判断Rt△BOD∽Rt△BCE,得∠CBE=∠OBD=β,因此sin(α﹣β)=sin(∠DBC﹣∠OBD)=sin∠OBC=![]()
;
(3)显然Rt△COA∽Rt△BCE,此时点P1(0,0),
过A作AP2⊥AC交y正半轴于P2,由Rt△CAP2∽Rt△BCE,得P2(0,![]()
),
过C作CP3⊥AC交x正半轴于P3,由Rt△P3CA∽Rt△BCE,得P3(9,0),
故在坐标轴上存在三个点P1(0,0),P2(0,![]()
),P3(9,0),使得以P、A、C为顶点的三角形与△BCE相似.
【解答】解:(1)由题意可知C(0,﹣3),﹣![]()
=1,
∴抛物线的解析式为y=ax2﹣2ax﹣3(a>0),
过M作MN⊥y轴于N,连接CM,则MN=1,CM=![]()
,
∴CN=2,于是m=﹣1.
同理可求得B(3,0),
∴a×32﹣2a×3﹣3=0,得a=1.
∴抛物线的解析式为y=x2﹣2x﹣3.
(2)由(1)得A(﹣1,0),E(1,﹣4),B(3,0),C(0,﹣3).
∵M到AB,CD的距离相等,OB=OC,
∴OA=OD,
∴点D的坐标为(0,1),
∴在Rt△BCO中,BC=![]()
=3![]()
,
∴![]()
,
在△BCE中,∵BC2+CE2=(32+32)+[(1﹣0)2+(﹣4+3)2]=20=(3﹣1)2+(0+4)2=BE2∴△BCE是Rt△
![]()
,
∴![]()
,
即![]()
,
∴Rt△BOD∽Rt△BCE,得∠CBE=∠OBD=β,
因此sin(α﹣β)=sin(∠DBC﹣∠OBD)=sin∠OBC=![]()
.
(3)显然Rt△COA∽Rt△BCE,此时点P1(0,0).
过A作AP2⊥AC交y正半轴于P2,
由Rt△CAP2∽Rt△BCE,得P2(0,![]()
).
过C作CP3⊥AC交x正半轴于P3,由Rt△P3CA∽Rt△BCE,得P3(9,0).
故在坐标轴上存在三个点P1(0,0),P2(0,![]()
),P3(9,0),
使得以P、A、C为顶点的三角形与△BCE相似.
![]()
![]()
【点评】此题考查了二次函数与圆的知识的综合应用,要注意分析图形,应用相似三角形的性质与判定,要注意数形结合思想的应用.