题目内容
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为3,求的长.(结果保留π)
如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C-D-E上移动,若点C、D、E的坐标分别为(-1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为( )
A.1 B.2 C.3 D.4
已知:等边△ABC的边长为a.
探究(1):如图1,过等边△ABC的顶点A、B、C依次作AB、BC、CA的垂线围成△MNG,求证:△MNG是等边三角形且MN=a;
探究(2):在等边△ABC内取一点O,过点O分别作OD⊥AB、OE⊥BC、OF⊥CA,垂足分别为点D、E、F.
①如图2,若点O是△ABC的重心,我们可利用三角形面积公式及等边三角形性质得到两个正确结论(不必证明):结论1.OD+OE+OF=a;结论2.AD+BE+CF=a;
②如图3,若点O是等边△ABC内任意一点,则上述结论1,2是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.
甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得S甲2<S乙2,则成绩较稳定的同学是 .
如图1,已知:抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,经过B、C两点的直线是y=x-2,连结AC.
(1)B、C两点坐标分别为B( , )、C( , ),抛物线的函数关系式为 ;
(2)判断△ABC的形状,并说明理由;
(3)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.
如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,若EF=2,则菱形ABCD的边长是 .
分式方程的解是( )
A.1 B.-1 C. D.-
如图,四边形OABC是边长为2的正方形,函数y=(k>0)的图象经过点B,将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′,NA′BC.设线段MC′,NA′分别与函数y=(k>0)的图象交于点E、F,则直线EF与x轴的交点坐标为 .
在下列实数中,无理数是( )
A.3.1415926 B. C. D.