ÌâÄ¿ÄÚÈÝ
Èçͼ£¬¾ØÐÎOABC£¬A£¨5£¬0£©£¬C£¨0£¬3£©£®Ö±Ïßy=kx½»ÕÛÏßA-B-CÓÚµãP£¬µãA¹ØÓÚOPµÄ¶Ô³ÆµãA¡ä
£¨1£©µ±A¡äÇ¡ºÃÔÚCB±ßÉÏʱ£¬C A¡ä=
£¨2£©k=
ʱ£¬¾¹ýO¡¢A¡¢A¡äµÄÅ×ÎïÏßÇ¡ºÃÒÔA¡äΪ¶¥µã£¬¸ÃÅ×ÎïÏߵĽâÎöʽÊÇ
£¨3£©ÈôPÔÚAB±ßÉÏ£¬A¡äÔÚCBÉÏ·½Ê±£¬A¡äO¡¢A¡äP½»CB±ßÓÚµãE£¬F£®ÇókΪºÎֵʱ¡÷A¡äEF¡Õ¡÷BPF£¿²¢ËµÃ÷ÀíÓÉ£®
£¨4£©ÒÔOPΪֱ¾¶×÷¡ÑM£¬Ôò¡ÑMÓë¾ØÐÎOABC×î¶àÓÐ
£¼k£¼
ÇÒk¡Ù
£¼k£¼
ÇÒk¡Ù
£¨Ö±½Óд´ð°¸£©

£¨1£©µ±A¡äÇ¡ºÃÔÚCB±ßÉÏʱ£¬C A¡ä=
4
4
£¬k=| 1 |
| 3 |
| 1 |
| 3 |
£¨2£©k=
| ||
| 3 |
| ||
| 3 |
y=-
x(x-5)»òy=-
(x-
)2+
| 2 |
| 5 |
| 3 |
| 2 |
| 5 |
| 3 |
| 5 |
| 2 |
| 5 |
| 2 |
| 3 |
y=-
x(x-5)»òy=-
(x-
)2+
| 2 |
| 5 |
| 3 |
| 2 |
| 5 |
| 3 |
| 5 |
| 2 |
| 5 |
| 2 |
| 3 |
£¨3£©ÈôPÔÚAB±ßÉÏ£¬A¡äÔÚCBÉÏ·½Ê±£¬A¡äO¡¢A¡äP½»CB±ßÓÚµãE£¬F£®ÇókΪºÎֵʱ¡÷A¡äEF¡Õ¡÷BPF£¿²¢ËµÃ÷ÀíÓÉ£®
£¨4£©ÒÔOPΪֱ¾¶×÷¡ÑM£¬Ôò¡ÑMÓë¾ØÐÎOABC×î¶àÓÐ
6
6
¸ö¹«¹²µã£¬²¢Ð´³ö¹«¹²µã¸öÊý×î¶àʱkµÄȡֵ·¶Î§| 11 |
| 60 |
| 60 |
| 91 |
| 3 |
| 5 |
| 11 |
| 60 |
| 60 |
| 91 |
| 3 |
| 5 |
·ÖÎö£º£¨1£©Èçͼ1£¬Á¬½ÓOA¡ä£¬AA¡ä£®ÉèA¡ä£¨x£¬3£©£®
¸ù¾Ý¾ØÐεÄÐÔÖÊ£¬µãµÄ×ø±êÓëͼÐεÄÐÔÖÊÒÔ¼°¹´¹É¶¨ÀíÇóµÃCA¡ä=4£¬È»ºó½áºÏA£¨5£¬0£©ÇóµÃAA¡äµÄÖеãDµÄ×ø±êÊÇ£¨4.5£¬1.5£©£¬´Ó¶øÇóµÃkµÄÖµ£»
£¨2£©ÒòΪ¸ÃÅ×ÎïÏß¾¹ýµãO¡¢A£¬¹Ê¿ÉÉè½»µãʽº¯Êý½âÎöʽy=ax£¨x-5£©£¨a£¼0£©£®Óɶ¥µã×ø±ê¹«Ê½ÇóµÃA¡äµÄ×ø±ê£¬½áºÏÖá¶Ô³ÆµÄÐÔÖÊÀ´ÇóaµÄÖµ£»
£¨3£©¸ù¾ÝÈ«µÈÈý½ÇÐεĶÔÓ¦±ßÏàµÈºÍ¶ÔÓ¦½ÇÏàµÈ¡¢¹´¹É¶¨ÀíÒÔ¼°ÕýÇк¯ÊýµÄ¶¨ÒåÀ´ÇókµÄÖµ£®
£¨4£©¸ù¾ÝÌâÒ⣬»³öͼÐΣ¬¸ù¾ÝͼÐλشðÎÊÌ⣮
¸ù¾Ý¾ØÐεÄÐÔÖÊ£¬µãµÄ×ø±êÓëͼÐεÄÐÔÖÊÒÔ¼°¹´¹É¶¨ÀíÇóµÃCA¡ä=4£¬È»ºó½áºÏA£¨5£¬0£©ÇóµÃAA¡äµÄÖеãDµÄ×ø±êÊÇ£¨4.5£¬1.5£©£¬´Ó¶øÇóµÃkµÄÖµ£»
£¨2£©ÒòΪ¸ÃÅ×ÎïÏß¾¹ýµãO¡¢A£¬¹Ê¿ÉÉè½»µãʽº¯Êý½âÎöʽy=ax£¨x-5£©£¨a£¼0£©£®Óɶ¥µã×ø±ê¹«Ê½ÇóµÃA¡äµÄ×ø±ê£¬½áºÏÖá¶Ô³ÆµÄÐÔÖÊÀ´ÇóaµÄÖµ£»
£¨3£©¸ù¾ÝÈ«µÈÈý½ÇÐεĶÔÓ¦±ßÏàµÈºÍ¶ÔÓ¦½ÇÏàµÈ¡¢¹´¹É¶¨ÀíÒÔ¼°ÕýÇк¯ÊýµÄ¶¨ÒåÀ´ÇókµÄÖµ£®
£¨4£©¸ù¾ÝÌâÒ⣬»³öͼÐΣ¬¸ù¾ÝͼÐλشðÎÊÌ⣮
½â´ð£º
½â£º£¨1£©Èçͼ1£¬Á¬½ÓOA¡ä£¬AA¡ä£®ÉèA¡ä£¨x£¬3£©£¨0£¼x£¼5£©£®
¡ßÔÚ¾ØÐÎOABCÖУ¬A£¨5£¬0£©£¬C£¨0£¬3£©£¬
¡àOA=5£¬OC=3£®
¡ßµãAÓëµãA¡ä¹ØÓÚÖ±ÏßOP¶Ô³Æ£¬
¡àOA¡ä=OA=5£¬
¡àÔÚRt¡÷OCA¡äÖУ¬ÀûÓù´¹É¶¨ÀíÖª£¬CA¡ä=
=
=4£¬
¼´C A¡ä=4£¬
¡àA¡ä£¨4£¬3£©£¬
¡àÏß¶ÎAA¡äµÄÖеãDµÄ×ø±êÊÇ£¨4.5£¬1.5£©ÔÚÖ±ÏßOPÉÏ£¬
¡àk=
=
£®
£¨2£©¡ß¸ÃÅ×ÎïÏß¾¹ýµãO¡¢A£¬
¡à¿ÉÉè½»µãʽº¯Êý½âÎöʽy=ax£¨x-5£©£¨a£¼0£©£¬¼´y=a£¨x-
£©2-
a£®
¡ß¸ÃÅ×ÎïÏßÒÔµãA¡äΪ¶¥µã£¬
¡àA¡ä£¨
£¬-
a£©£®
¡àkAA¡ä=
=
a£¬Ïß¶ÎAA¡äµÄÖеãµÄ×ø±êÊÇ£¨
£¬-
a£©£®
ÓÖ¡ßµãAÓëµãA¡ä¹ØÓÚÖ±ÏßOP¶Ô³Æ£¬
¡àÏß¶ÎAA¡äµÄÖеãµÄ×ø±êÊÇ£¨
£¬-
a£©ÔÚÖ±ÏßOPÉÏ£¬
Ôò
£¬
½âµÃ£¬
£¬
¡à¸ÃÅ×ÎïÏߵĽâÎöʽÊÇy=-
x(x-5)»òy=-
(x-
)2+
£»
£¨3£©µ±k=
ʱ£¬¡÷A¡äEF¡Õ¡÷BPF£®ÀíÓÉÈçÏ£º
Èçͼ2£¬ÉèP£¨5£¬y£©£®¡ßµãAÓëµãA¡ä¹ØÓÚÖ±ÏßOP¶Ô³Æ£¬
¡à¡÷OAP¡Õ¡÷OA¡äP£¬
¡àAP=A¡äP£¬OA=OA¡ä=5£®
¡ß¡÷A¡äEF¡Õ¡÷BPF£¬
¡àA¡äF=FB£¬A¡äE=BP£¬¡ÏA¡ä=¡ÏB=90¡ã£¬¡ÏA¡äEF=¡ÏBPF£¬
¡à¡ÏCEO=¡ÏBPF£¬
¡à
£¬
½âµÃ£¬y=
£¬Ôòk=
=
£»
£¨4£©Èçͼ3£¬×î¶àÓÐ6¸ö½»µã£¬kµÄȡֵ·¶Î§ÊÇ£º
£¼k£¼
ÇÒk¡Ù
£®
µ±0£¼k£¼
ʱ£¬ÓÐ4¸ö¹²Í¬µã
k=
»ò
ʱ£¬ÓÐ5¸ö¹²Í¬µã£»
k=
ʱ£¬ÓÐ4¸ö¹²Í¬µã£®
¹Ê´ð°¸ÊÇ£º4£¬
£»
£»k=
£¬y=-
x(x-5)»òy=-
(x-
)2+
£»6£¬
£¼k£¼
ÇÒk¡Ù
£®
¡ßÔÚ¾ØÐÎOABCÖУ¬A£¨5£¬0£©£¬C£¨0£¬3£©£¬
¡àOA=5£¬OC=3£®
¡ßµãAÓëµãA¡ä¹ØÓÚÖ±ÏßOP¶Ô³Æ£¬
¡àOA¡ä=OA=5£¬
¡àÔÚRt¡÷OCA¡äÖУ¬ÀûÓù´¹É¶¨ÀíÖª£¬CA¡ä=
| OA¡ä2-OC2 |
| 52-32 |
¼´C A¡ä=4£¬
¡àA¡ä£¨4£¬3£©£¬
¡àÏß¶ÎAA¡äµÄÖеãDµÄ×ø±êÊÇ£¨4.5£¬1.5£©ÔÚÖ±ÏßOPÉÏ£¬
¡àk=
| 1.5 |
| 4.5 |
| 1 |
| 3 |
£¨2£©¡ß¸ÃÅ×ÎïÏß¾¹ýµãO¡¢A£¬
¡à¿ÉÉè½»µãʽº¯Êý½âÎöʽy=ax£¨x-5£©£¨a£¼0£©£¬¼´y=a£¨x-
| 5 |
| 2 |
| 25 |
| 4 |
¡ß¸ÃÅ×ÎïÏßÒÔµãA¡äΪ¶¥µã£¬
¡àA¡ä£¨
| 5 |
| 2 |
| 25 |
| 4 |
¡àkAA¡ä=
-
| ||
|
| 5 |
| 2 |
| 15 |
| 4 |
| 25 |
| 8 |
ÓÖ¡ßµãAÓëµãA¡ä¹ØÓÚÖ±ÏßOP¶Ô³Æ£¬
¡àÏß¶ÎAA¡äµÄÖеãµÄ×ø±êÊÇ£¨
| 15 |
| 4 |
| 25 |
| 8 |
Ôò
|
½âµÃ£¬
|
¡à¸ÃÅ×ÎïÏߵĽâÎöʽÊÇy=-
| 2 |
| 5 |
| 3 |
| 2 |
| 5 |
| 3 |
| 5 |
| 2 |
| 5 |
| 2 |
| 3 |
£¨3£©µ±k=
| 3 |
| 7 |
Èçͼ2£¬ÉèP£¨5£¬y£©£®¡ßµãAÓëµãA¡ä¹ØÓÚÖ±ÏßOP¶Ô³Æ£¬
¡à¡÷OAP¡Õ¡÷OA¡äP£¬
¡àAP=A¡äP£¬OA=OA¡ä=5£®
¡ß¡÷A¡äEF¡Õ¡÷BPF£¬
¡àA¡äF=FB£¬A¡äE=BP£¬¡ÏA¡ä=¡ÏB=90¡ã£¬¡ÏA¡äEF=¡ÏBPF£¬
¡à¡ÏCEO=¡ÏBPF£¬
¡à
|
½âµÃ£¬y=
| 15 |
| 7 |
| ||
| 5 |
| 3 |
| 7 |
£¨4£©Èçͼ3£¬×î¶àÓÐ6¸ö½»µã£¬kµÄȡֵ·¶Î§ÊÇ£º
| 11 |
| 60 |
| 60 |
| 91 |
| 3 |
| 5 |
µ±0£¼k£¼
| 11 |
| 60 |
k=
| 11 |
| 60 |
| 60 |
| 91 |
k=
| 3 |
| 5 |
¹Ê´ð°¸ÊÇ£º4£¬
| 1 |
| 3 |
| 3 |
| 7 |
| ||
| 3 |
| 2 |
| 5 |
| 3 |
| 2 |
| 5 |
| 3 |
| 5 |
| 2 |
| 5 |
| 2 |
| 3 |
| 11 |
| 60 |
| 60 |
| 91 |
| 3 |
| 5 |
µãÆÀ£º±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣮עÒ⣬·½³Ì×éµÄ½â·¨µÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿