题目内容
要使式子有意义,则a的取值范围为_____________________.
如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.
(1)求BC的长;
(2)求⊙O的半径.
如图,四边形ABCD是菱形,点A,B,C,D的坐标分别是(m,0),(0,n),(1,0),(0,2),则mn=_____.
如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度数;
(2)若OC=3,OA=5,求AB的长.
如图,点A(a,2)、B(﹣2,b)都在双曲线y=上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是y=x+,则k=______.
已知二次函数中,其函数与自变量的部分对应值如下表所示:
…
0
1
2
3
5
点、在函数的图像上,当、时,与的大小关系是( )
A. B. C. D.
如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.试说明:AB=BC+AD.
A、B两地相距900m,甲乙两人同时从A地出发匀速前往B地,甲到达B地时乙距B地300m.甲到达B地后立刻以原速返回A地,返回途中与乙相遇,相遇后乙也立刻以原速向A地返回.甲、乙离A地的距离y1、y2与他们出发的时间t的函数关系如图所示.
(1)a= ; b= ;
(2)写出点C表示的实际意义 及点C的坐标
(3)甲出发多长时间,两人相距175m?
某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:
()若商场预计进货款为元,则这两种台灯各购进多少盏?
()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?