题目内容
某一次函数的图象经过点(-1,2),且经过第一、二、三象限,请你写出一个符合上述条件的函数关系式_____________________.
如图,某同学把三角形玻璃打碎三块,现在他要去配一块完全一样的,你帮他想一想,带________片去,应用的原理是________(用字母表示).
如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.
求证:①AB=AD;
②CD平分∠ACE.
【答案】详见解析.
【解析】(1)∵AD∥BE,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD;
(2)∵AD∥BE,
∴∠ADC=∠DCE,
由①知AB=AD,
又∵AB=AC,
∴AC=AD,
∴∠ACD=∠ADC,
∴∠ACD=∠DCE,
∴CD平分∠ACE;
点睛:角平分线问题的辅助线添加及其解题模型.
①垂两边:如图(1),已知平分,过点作, ,则.
②截两边:如图(2),已知平分,点 上,在上截取,则≌.
③角平分线+平行线→等腰三角形:
如图(3),已知平分, ,则;
如图(4),已知平分, ,则.
(1) (2) (3) (4)
④三线合一(利用角平分线+垂线→等腰三角形):
如图(5),已知平分,且,则, .
(5)
【题型】解答题【结束】26
如图①,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.
(1)求证:AC平分∠DAB;
(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;
(3)如图②,连接OD交AC于点G,若,求sinE的值.
如果多项式x2﹣mx+n能因式分解为(x+2)(x﹣5),则m+n的值是( )
A. ﹣5 B. ﹣7 C. 2 D. -2
若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径是( )
A. 1 B. 2 C. 5 D. 6
如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的整数解为( )
A. -1 B. -5 C. -4 D. -3
(1)已知x=﹣3是关于x的方程2k﹣x﹣k(x+4)=5的解,求k的值;
(2)在(1)的条件下,已知线段AB=12cm,点C是直线AB上一点,且BC=k•AC,若点D是AC的中点,求线段CD的长.
计算: ___________.
.下列说法正确的是( )
A. 平移不改变图形的形状和大小,而旋转改变图形的形状和大小
B. 平移和旋转都不改变图形的形状和大小
C. 图形可以向某方向平移一定距离,也可以向某方向旋转一定距离
D. 在平移和旋转图形的过程中,对应角相等,对应线段相等且平行