题目内容
如图,点A(x1,y1)、B(x2,y2)都在双曲线y=
上,且x2-x1=4,y1-y2=2.分别过点A、B向x轴、y轴作垂线段,垂足分别为C、D、E、F,AC与BF相交于G点,四边形FOCG的面积为2,五边形AEODB的面积为14,那么双曲线的解析式为
- A.y=

- B.y=

- C.y=

- D.y=

B
分析:根据S矩形AEOC=S矩形OFBD=
(S五边形AEODB-S△AGB-S四边形FOCG)+S四边形FOCG,先求得S矩形AEOC和S矩形OFBD的值,利用k=AE•AC=FB•BD即可求得函数解析式.
解答:∵x2-x1=4,y1-y2=2,
∴BG=4,AG=2,
∴S△AGB=4,
∵S矩形AEOC=S矩形OFBD,四边形FOCG的面积为2,
∴S矩形AEOC=S矩形OFBD=
(S五边形AEODB-S△AGB-S四边形FOCG)+S四边形FOCG=
(14-4-2)+2=6,
即AE•AC=6,
即可得:y=
.
故选B.
点评:此题综合考查了反比例函数与一次函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点向x轴y轴引垂线形成的矩形面积等于反比例函数的k值.
分析:根据S矩形AEOC=S矩形OFBD=
解答:∵x2-x1=4,y1-y2=2,
∴BG=4,AG=2,
∴S△AGB=4,
∵S矩形AEOC=S矩形OFBD,四边形FOCG的面积为2,
∴S矩形AEOC=S矩形OFBD=
即AE•AC=6,
即可得:y=
故选B.
点评:此题综合考查了反比例函数与一次函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点向x轴y轴引垂线形成的矩形面积等于反比例函数的k值.
练习册系列答案
相关题目
| 1 |
| x |
| A、x1<x2,y1<y2 |
| B、x1<x2,y1>y2 |
| C、x1>x2,y1<y2 |
| D、x1>x2,y1>y2 |