题目内容
【题目】若抛物线y=ax2+c与x轴交于点A(m,0),B(n,0),与y轴交于点C(0,c),则称△ABC为“抛物三角形”.特别地,当mnc<0时,称△ABC为“正抛物三角形”;当mnc>0时,称△ABC为“倒抛物三角形”.若△ABC为“倒抛物三角形”时,a、c应分别满足条件_____、_____;若△ABC为“正抛物三角形”,此时△ABC及其关于x轴的轴对称图形恰好构成了一个含60°角的菱形,则a、c应满足的关系为_____.
【答案】a>0, c<0 ac=﹣3或﹣
.
【解析】
(1)由抛物三角形的定义可知,△ABC为“倒抛物三角形”时,开口向上,函数与y轴负半轴有交点;
(2)分∠CAB=60°和∠CAB=30°两种情况分别计算.
解:(1)由题意可知mn<0,当a>0,c<0时,为△ABC为“倒抛物三角形”;
(2)当∠CAB=60°时,则AO=tan60°×c=
c,则a(
c)2+c=0,解得:ac=﹣
,
当∠CAB=30°时,则AO=tan30°×c=
c,则a(
c)2+c=0,解得:ac=-3;
故答案为:ac=﹣3或﹣
.
练习册系列答案
相关题目