ÌâÄ¿ÄÚÈÝ
ÇëÄãÔĶÁÏÂÁнâÌâ¹ý³Ì£¬²¢»Ø´ðËùÌá³öµÄÎÊÌ⣮
-
½â£ºÔʽ=
-
¡¢Ù
=
-
¡¢Ú
=x-3-3£¨x+1£©¡¢Û
=-2x-6¡¢Ü
ÎÊ£º
£¨1£©ÒÔÉϽâ´ðÕýÈ·Âð£¿
£¨2£©´Ó¢Ú²½µ½¢ÛÊÇ·ñÕýÈ·£¿
£¨3£©ÇëÄã¸ø³öÕýÈ·½â´ð£®
| x-3 |
| x2-1 |
| 3 |
| 1-x |
½â£ºÔʽ=
| x-3 |
| (x+1)(x-1) |
| 3 |
| x-1 |
=
| x-3 |
| (x+1)(x-1) |
| 3(x+1) |
| (x+1)(x-1) |
=x-3-3£¨x+1£©¡¢Û
=-2x-6¡¢Ü
ÎÊ£º
£¨1£©ÒÔÉϽâ´ðÕýÈ·Âð£¿
²»ÕýÈ·
²»ÕýÈ·
£¬Èô²»ÕýÈ·£¬´ÓÄÄÒ»²½¿ªÊ¼´í£¿¢Ù
¢Ù
£®£¨2£©´Ó¢Ú²½µ½¢ÛÊÇ·ñÕýÈ·£¿
²»ÕýÈ·
²»ÕýÈ·
£¬Èô²»ÕýÈ·£¬´íÎóµÄÔÒòÊǰѷÖĸȥµôÁË£¨Ó¦·Öĸ²»±ä£¬°Ñ·Ö×ÓÏà¼õ£©
°Ñ·ÖĸȥµôÁË£¨Ó¦·Öĸ²»±ä£¬°Ñ·Ö×ÓÏà¼õ£©
£®£¨3£©ÇëÄã¸ø³öÕýÈ·½â´ð£®
·ÖÎö£º£¨1£©Ó¦Îª
+
£»
£¨2£©Ó¦·Öĸ²»±ä£¬°Ñ·Ö×ÓÏà¼õ£»
£¨3£©ÏȱäÐκóÔÙͨ·Ö±ä³Éͬ·ÖĸµÄ·ÖʽÏà¼õ£¬×îºó·Öĸ²»±ä£¬°Ñ·Ö×ÓÏà¼õ£®
| x-3 |
| (x+1)(x-1) |
| 3 |
| x-1 |
£¨2£©Ó¦·Öĸ²»±ä£¬°Ñ·Ö×ÓÏà¼õ£»
£¨3£©ÏȱäÐκóÔÙͨ·Ö±ä³Éͬ·ÖĸµÄ·ÖʽÏà¼õ£¬×îºó·Öĸ²»±ä£¬°Ñ·Ö×ÓÏà¼õ£®
½â´ð£º½â£º£¨1£©¹Ê´ð°¸Îª£º²»ÕýÈ·£¬¢Ù£»
£¨2£©¹Ê´ð°¸Îª£º²»ÕýÈ·£¬°Ñ·ÖĸȥµôÁË£¨Ó¦·Öĸ²»±ä£¬°Ñ·Ö×ÓÏà¼õ£©£»
£¨3£©
-
=
+
¢Ù
=
+
¢Ú
=
¢Û
=
£®
£¨2£©¹Ê´ð°¸Îª£º²»ÕýÈ·£¬°Ñ·ÖĸȥµôÁË£¨Ó¦·Öĸ²»±ä£¬°Ñ·Ö×ÓÏà¼õ£©£»
£¨3£©
| x-3 |
| x2-1 |
| 3 |
| 1-x |
=
| x-3 |
| (x+1)(x-1) |
| 3 |
| x-1 |
=
| x-3 |
| (x+1)(x-1) |
| 3(x+1) |
| (x+1)(x-1) |
=
| x-3+3(x+1) |
| (x+1)(x-1) |
=
| 4x |
| x2-1 |
µãÆÀ£º±¾Ì⿼²éÁË·ÖʽµÄ¼Ó¼õÔËË㣬ÌâÄ¿¾ßÓÐÒ»¶¨µÄ´ú±íÐÔ£¬ÊÇÒ»µÀ±È½ÏÈÝÒ׳ö´íµÄÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿