题目内容

3.如图,O为直线AB上一点,过点O作直线OC,若∠AOC为锐角,射线OD平分∠AOC,射线OE平分∠BOC,射线OF平分∠DOE,则∠FOB+∠DOC的度数为(  )
A.100°B.110°C.120°D.135°

分析 先根据射线OD平分∠AOC,∠AOD=∠COD,射线OE平分∠BOC,得∠COE=∠BOE,再根据∠AOC+∠BOC=180°,得出∠DOE=90°,由射线OF平分∠DOE,得∠DOF=∠EOF=45°,从而求得∠FOB+∠DOC的度数.

解答 解:∵射线OD平分∠AOC,
∴∠AOD=∠COD,
∵射线OE平分∠BOC,
∴∠COE=∠BOE,
∵∠AOC+∠BOC=180°,
∴∠DOE=∠DOC+∠EOC=$\frac{1}{2}$∠AOC+$\frac{1}{2}$∠BOC=90°,
∵OF平分∠DOE,
∴∠DOF=∠EOF=$\frac{1}{2}$∠DOE=45°,
∴∠FOB+∠DOC=∠BOF+∠AOD=180°-∠DOF=180°-45°=135°.
故选:D.

点评 本题考查了角的计算和角平分线的定义,一定要注意角平分线的几种表示方法.如:∠1=∠2,∠1=$\frac{1}{2}$∠AOB,∠AOB=2∠1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网