题目内容

若二次函数 (a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M (x0,y0)在x轴下方,则下列判断正确的是.

A.a>0                     B.b2-4ac≥0

C.x1<x0<x2                         D.a(x0-x1)( x0-x2)<0

 

【答案】

D

【解析】

试题分析:a的符号不能确定,选项A错误。

二次函数 (a≠0)的图象与x轴有两个交点,故b2-4ac>0。选项B错误。

分a>0,a<0两种情况画出两个草图来分析(见下图):

由于a的符号不能确定(可正可负,即抛物线的开口可向上,也可向下),所以x0,x1, x2      的大小就无法确定。选项C错误。

在图1中,a<0且有x0<x1< x2(或x1< x2< x0),则a(x0-x1)( x0-x2)<0;在图2中a>0,且有x1< x0< x2,则a(x0-x1)( x0-x2)<0.。选项C正确。

故选D。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网