题目内容

如图,在等边三角形ABC中,AE=CD,AD、BE相交于P点.∠BPD=________°.

60
分析:易证△ABD≌△CBE,得∠BAD=∠CBE,根据∠ABD+∠BAD+∠ADB=180°,∠EBD+∠ADB+∠BPD=180°,可证∠BPD=∠ABD,即可解题.
解答:∵AE=CD,∴CE=BD,
∵∠ABD=∠BCE,AB=BC,
∴△ABD≌△CBE,故∠BAD=∠CBE,
∵∠ABD+∠BAD+∠ADB=180°,
∠CBE+∠ADB+∠BPD=180°,
∴∠BPD=∠ABD,
∵∠ABD=60°,∴∠BPD=60°,
故答案为 60°.
点评:本题考查了等边三角形内角为60°的性质,考查了三角形内角和为180°的性质,考查了全等三角形的证明和对应角相等的性质,本题中求证△ABD≌△CBE是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网