题目内容
用配方法解关于x的方程x2+mx+n=0,此方程可变形为( )
A、(x+
| ||||
B、(x+
| ||||
C、(x+
| ||||
D、(x+
|
分析:配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
解答:解:∵x2+mx+n=0,
∴x2+mx=-n,
∴x2+mx+
=-n+
,
∴(x+
)2=
.
故选B.
∴x2+mx=-n,
∴x2+mx+
| m2 |
| 4 |
| m2 |
| 4 |
∴(x+
| m |
| 2 |
| m2-4n |
| 4 |
故选B.
点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
练习册系列答案
相关题目
用配方法解关于x的方程x2+px+q=0时,方程可变形为( )
A、(x+
| ||||
B、(x+
| ||||
C、(x-
| ||||
D、(x-
|
用配方法解关于x的方程x2+px+q=0时,此方程可变形为( )
A、(x+
| ||||
B、(x+
| ||||
C、(x-
| ||||
D、(x-
|