题目内容
如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.
(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;
(2)求证:
.
![]()
(1)BH=AC,理由如下:
∵CD⊥AB,BE⊥AC,
∴∠BDH=∠BEC=∠CDA=90°,
∵∠ABC=45°,
∴∠BCD=180°-90°-45°=45°=∠ABC
∴DB=DC,
∵∠BDH=∠BEC=∠CDA=90°,
∴∠A+∠ACD=90°,∠A+∠HBD=90°,
∴∠HBD=∠ACD,
∵在△DBH和△DCA中
,∴△DBH≌△DCA(ASA),∴BH=AC.
(2)连接CG,
由(1)知,DB=CD,∵F为BC的中点,
∴DF垂直平分BC,∴BG=CG,
∵∠ABE=∠CBE,BE⊥AC,∴EC=EA,
在Rt△CGE中,由勾股定理得:
,
∵CE=AE,BG=CG,∴
.
练习册系列答案
相关题目