题目内容
已知(a-1)2+|b-2|=0,求| 1 |
| ab |
| 1 |
| (a+1)(b+1) |
| 1 |
| (a+2)(b+2) |
| 1 |
| (a+1998)(b+1998) |
分析:首先要根据非负数的和为0,则这几个非负数同时为0,求得a和b的值.再根据规律进行计算.
解答:解:∵(a-1)2+|b-2|=0,
∴a=1,b=2.
∴
+
+
+…+
=
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
=
.
∴a=1,b=2.
∴
| 1 |
| ab |
| 1 |
| (a+1)(b+1) |
| 1 |
| (a+2)(b+2) |
| 1 |
| (a+1998)(b+1998) |
=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 1999×2000 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 1999 |
| 1 |
| 2000 |
=1-
| 1 |
| 2000 |
=
| 1999 |
| 2000 |
点评:注意:几个非负数的和为0,则这几个非负数同时为0.还要注意此类题计算过程中的规律,明白
=
-
是解题的关键.
| 1 |
| n×(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
练习册系列答案
相关题目