题目内容
先化简,再求值:(-)÷ , 然后选取一个你喜欢的数代入求值.
如图,点在射线上,,则等于( )
A. B. 180º
C. D. 180º
某校要求200名学生进行社会调查,每人必须完成3~6份报告,调查结束后随机抽查了20名学生每人完成报告的份数,并分为四类,A:3份;B:4份;C:5份;D:6份.将各类的人数绘制成扇形图(如图1)和尚未完整的条形图(如图2),回答下列问题:
(1)请将条形统计图2补充完整;
(2)写出这20名学生每天完成报告份数的众数_____份和中位数_____份;
(3)在求出20名学生每人完成报告份数的平均数时,小明是这样分析的:
第一步:求平均数的公式是 =;
第二步:在该问题中,n=4,x1=3,x2=4,x3=5,x4=6;
第三步:==4.5(份).
小明的分析对不对?如果对,请说明理由,如果不对,请求出正确结果;
(4)现从“D类”的学生中随机选出2人进行采访,若“D类”的学生中只有1名男生,则所选两位同学中有男同学的概率是多少?请用列表法或树状图的方法求解.
下列计算正确的是( )
A. (-2)2=4 B. C. 0×(-2018)=2018 D. -2<-3
在平面内有一等腰直角三角板(∠ACB=90º)和直线l.过点C作CE⊥l于点E,过点B作BF⊥l于点F.当点E与点A重合时(图①),易证:AF+BF=2CE.当三角板绕点A顺时针旋转至图②.图③的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,请直接写出线段AF.BF.CE之间的数量关系的猜想(不需证明).
如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC的面积是4,则这个反比例函数的解析式是( )
A. y= B. y= C. y= D. y=
矩形ABCD中,AB=20,BC=6,E为AB边的中点,P为CD边上的点,且△AEP是腰长为10的等腰三角形,则线段BP的长为______________
使(x2+px+8)(x2﹣3x+q)乘积中不含x2与x3项的p、q的值是( )
A. p=0,q=0 B. p=3,q=1 C. p=﹣3,q=﹣9 D. p=﹣3,q=1
如图1,在△ABC中,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB.过点E作EF∥BC且EF=BC连接AE、AF.
(1)求证:AE=BC;
(2)如图2,若∠ADB=90°,求∠FAE的度数;
(3)在(2)的条件下,若AB=2,AD:CD=1:2,,求AF的长.