题目内容
【题目】如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.![]()
(1)求证:AC是⊙O的切线;
(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.
【答案】
(1)证明:连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,如图所示: ![]()
∵∠ABC:∠ACB:∠ADB=1:2:3,∠ADB=∠ACB+∠CAD,
∴∠ABC=∠CAD,
∵AE为⊙O的直径,
∴∠ADE=90°,
∴∠EAD=90°﹣∠AED,
∵∠AED=∠ABD,
∴∠AED=∠ABC=∠CAD,
∴∠EAD=90°﹣∠CAD,
即∠EAD+∠CAD=90°,
∴EA⊥AC,
∴AC是⊙O的切线;
(2)解:∵BD是⊙O的直径,
∴∠BAD=90°,
∴∠ABC+∠ADB=90°,
∵∠ABC:∠ACB:∠ADB=1:2:3,
∴4∠ABC=90°,
∴∠ABC=22.5°,
由(1)知:∠ABC=∠CAD,
∴∠CAD=22.5°.
【解析】(1)证明切线须连接半径,证直线与半径垂直;(2)利用直径所对的圆周角等于90度可得出4∠ABC=90°,再转化为∠CAD=22.5°.
【考点精析】解答此题的关键在于理解圆周角定理的相关知识,掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半,以及对三角形的外接圆与外心的理解,了解过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心.
【题目】某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1800元 |
第二周 | 4台 | 10台 | 3100元 |
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A,B两种型号的电风扇的销售单价.
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
【题目】某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:
A型 | B型 | |
价格(万元/台) | 12 | 10 |
月污水处理能力(吨/月) | 200 | 160 |
经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.
(1)该企业有几种购买方案?
(2)哪种方案更省钱,说明理由.