题目内容

【题目】如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.

(1)求证:AC是⊙O的切线;
(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.

【答案】
(1)证明:连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,如图所示:

∵∠ABC:∠ACB:∠ADB=1:2:3,∠ADB=∠ACB+∠CAD,

∴∠ABC=∠CAD,

∵AE为⊙O的直径,

∴∠ADE=90°,

∴∠EAD=90°﹣∠AED,

∵∠AED=∠ABD,

∴∠AED=∠ABC=∠CAD,

∴∠EAD=90°﹣∠CAD,

即∠EAD+∠CAD=90°,

∴EA⊥AC,

∴AC是⊙O的切线;


(2)解:∵BD是⊙O的直径,

∴∠BAD=90°,

∴∠ABC+∠ADB=90°,

∵∠ABC:∠ACB:∠ADB=1:2:3,

∴4∠ABC=90°,

∴∠ABC=22.5°,

由(1)知:∠ABC=∠CAD,

∴∠CAD=22.5°.


【解析】(1)证明切线须连接半径,证直线与半径垂直;(2)利用直径所对的圆周角等于90度可得出4∠ABC=90°,再转化为∠CAD=22.5°.
【考点精析】解答此题的关键在于理解圆周角定理的相关知识,掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半,以及对三角形的外接圆与外心的理解,了解过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网