题目内容
如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E= .
如图,已知直线与轴、轴分别交于、两点,是以为圆心,为半径的圆上一动点,连结、.则面积的最小值是( )
A. 6 B. 10 C. D.
解方程:.
阅读理【解析】
我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.
(1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形是 .
猜想证明:
(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2, 之间的数量关系,并说明理由;
拓展探究:
(3)如图2,在矩形ABCD中,E是AD边上的一点,且AB2=AE•AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为4 (m>0),平行四边形A1B1C1D1的面积为2(m>0),试求∠A1E1B1+∠A1D1B1的度数.
如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B、C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=,则线段CE的最大值为 .
函数y=的图象可能是( )
A. B. C. D.
如图,抛物线y=ax2+bx﹣经过A(﹣1,0),B(5,0)两点.
(1)求此抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使得PA+PC的值最小时,求△ABP的面积;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.
如图,A,B是双曲线y=上的两个点,过点A作AC⊥x轴,交OB于点D,垂足为点C.若△ODC的面积为1,D为OB的中点,则k的值为( )
A. B. C. 4 D. 8
如图,已知反比例函数的图象经过点,在该图象上年找一点P,使,则点P的坐标为______.