题目内容
5.分析 设∠A=x°,由AE=DE,根据等腰三角形的性质,可求得∠ADE=x°,然后由三角形的外角的性质,求得∠AED=2x°,再利用折叠的性质与等腰三角形的性质,即可得∠C=∠BDC=2x°,∠CBD=x°,然后由三角形内角和定理,求得方程x+2x+2x=180,继而求得答案.
解答 解:设∠A=x°,
∵AE=DE,
∴∠ADE=∠A=x°,
∴∠BEC=∠A+∠ADE=2x°,
由折叠的性质可得:∠C=∠BEC=2x°,
∵BD=BC,
∴∠BDC=∠C=2x°,
∴∠ABD=∠BDC-∠A=x°,
∴∠CBD=∠ABD=x°,
在△BCD中,∠C+∠CBD+∠BDC=180°,
∴x+2x+2x=180,
解得:x=36,
∴∠A=36°.
故答案为:36°.
点评 此题考查了折叠的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.注意根据题意得到方程x+2x+2x=180是关键.
练习册系列答案
相关题目
15.若(m-2)${x}^{{m}^{2}-2}$-x+1=0是一元二次方程,则m的值为( )
| A. | ±2 | B. | 2 | C. | -2 | D. | 以上结论都不对 |
16.tan30°=( )
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
17.若一元二次方程(1-2k)x2+8x-6=0没有实数根,那么k的最小值是( )
| A. | 2 | B. | 0 | C. | 1 | D. | 3 |