ÌâÄ¿ÄÚÈÝ
Èçͼ1£¬ÒÑÖª¡ÑOµÄ°ë¾¶Îª2£¬µãAµÄ×ø±êΪ£¨-4£¬0£©£¬µãBΪ¡ÑOÉϵ͝µã£¬ÒÔABΪ±ßÏòÍâ×öÕý·½ÐÎABCD£®
£¨1£©µ±µãBÔÚyÖáµÄÕý°ëÖáÉÏʱ£¬Èçͼ2£¬ÇóµãCµÄ×ø±ê£®
£¨2£©µ±Ö±ÏßABÓë¡ÑOÏàÇÐʱ£¬ÇóÖ±ÏßABµÄ½âÎöʽ£®
£¨3£©É趯µãBµÄºá×ø±êΪm£¬Õý·½ÐÎABCDµÄÃæ»ýΪS£¬Çó³öSÓëmµÄº¯Êý¹ØÏµÊ½£¬²¢ÅжÏÕý·½ÐÎABCDµÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ»ò×îСֵ£¿Èç¹û´æÔÚ£¬Çó³ömµÄÖµ£¬Èç¹û²»´æÔÚ£¬ÊÔ˵Ã÷ÀíÓÉ£®

£¨1£©µ±µãBÔÚyÖáµÄÕý°ëÖáÉÏʱ£¬Èçͼ2£¬ÇóµãCµÄ×ø±ê£®
£¨2£©µ±Ö±ÏßABÓë¡ÑOÏàÇÐʱ£¬ÇóÖ±ÏßABµÄ½âÎöʽ£®
£¨3£©É趯µãBµÄºá×ø±êΪm£¬Õý·½ÐÎABCDµÄÃæ»ýΪS£¬Çó³öSÓëmµÄº¯Êý¹ØÏµÊ½£¬²¢ÅжÏÕý·½ÐÎABCDµÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ»ò×îСֵ£¿Èç¹û´æÔÚ£¬Çó³ömµÄÖµ£¬Èç¹û²»´æÔÚ£¬ÊÔ˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Èçͼ2£¬¹ýµãC×÷CE¡ÍyÖáÓÚµãE£¬¹¹½¨È«µÈÈý½ÇÐΣ¨¡÷ABO¡Õ¡÷BCE£©£¬¸ù¾ÝÈ«µÈÈý½ÇÐεĶÔÓ¦±ßÏàµÈÖ¤µÃOB=EC=2£¬OA=EB=4£¬ÔòOE=OB+EB=6£¬ËùÒÔC£¨-2£¬6£©£»
£¨2£©Èçͼ3£¬Á¬½ÓOB£¬¹ýµãB×÷BD¡ÍOAÓÚµãD£®ÀûÓÃÇÐÏßµÄÐÔÖÊÖ¤µÃ¡ÏABO=90¡ã£®Í¨¹ý½âÖ±½Ç¡÷ABOºÍÖ±½Ç¡÷ABD¿ÉÒÔÇóµÃµãBµÄ×ø±êÊÇB£¨-1£¬
£©£®È»ºó°ÑµãA¡¢BµÄ×ø±ê·Ö±ð´úÈëÖ±ÏßABµÄ·½³Ì
y=kx+b£¨k¡Ù0£©£¬Áгö¹ØÓÚk¡¢bÊýµÄ·½³Ì×飬ͨ¹ý½â·½³Ì×é¼´¿ÉÇóµÃËüÃǵÄÖµ£»
£¨3£©ÀíÓɹ´¹É¶¨ÀíÇóµÃAB2=AD2+BD2=£¨4+m£©2+4-m2=8m+20£®¼´S=8m+20£®ËùÒÔ½áºÏͼÐοÉÖª-2¡Üm¡Ü2£¬Ôò4¡ÜS¡Ü36£®¼´µ±m=2ʱ£¬S×î´óÖµ=36£»µ±m=-2ʱ£¬S×îСֵ=4£®
£¨2£©Èçͼ3£¬Á¬½ÓOB£¬¹ýµãB×÷BD¡ÍOAÓÚµãD£®ÀûÓÃÇÐÏßµÄÐÔÖÊÖ¤µÃ¡ÏABO=90¡ã£®Í¨¹ý½âÖ±½Ç¡÷ABOºÍÖ±½Ç¡÷ABD¿ÉÒÔÇóµÃµãBµÄ×ø±êÊÇB£¨-1£¬
| 3 |
y=kx+b£¨k¡Ù0£©£¬Áгö¹ØÓÚk¡¢bÊýµÄ·½³Ì×飬ͨ¹ý½â·½³Ì×é¼´¿ÉÇóµÃËüÃǵÄÖµ£»
£¨3£©ÀíÓɹ´¹É¶¨ÀíÇóµÃAB2=AD2+BD2=£¨4+m£©2+4-m2=8m+20£®¼´S=8m+20£®ËùÒÔ½áºÏͼÐοÉÖª-2¡Üm¡Ü2£¬Ôò4¡ÜS¡Ü36£®¼´µ±m=2ʱ£¬S×î´óÖµ=36£»µ±m=-2ʱ£¬S×îСֵ=4£®
½â´ð£º
½â£º£¨1£©Èçͼ2£¬¡ß¡ÑOµÄ°ë¾¶Îª2£¬µãAµÄ×ø±êΪ£¨-4£¬0£©£¬ËıßÐÎABCDÊÇÕý·½ÐΣ¬
¡àOA=4£¬OB=2£¬AB=BC£¬¡ÏABC=90¡ã£®
¹ýµãC×÷CE¡ÍyÖáÓÚµãE£¬Ôò¡Ï1=¡Ï2£¨Í¬½ÅµÄÓà½ÇÏàµÈ£©£®
¡ßÔÚ¡÷ABOÓë¡÷BCEÖУ¬
£¬
¡à¡÷ABO¡Õ¡÷BCE£¨ASA£©£¬
¡àOB=EC=2£¬OA=EB=4£¬
¡àOE=OB+EB=2+4=6£¬
¡àC£¨-2£¬6£©£»
£¨2£©Èçͼ3£¬Á¬½ÓOB£¬¹ýµãB×÷BD¡ÍOAÓÚµãD£®
¡ßABÊÇ¡ÑOµÄÇÐÏߣ¬
¡à¡ÏABO=90¡ã£®
¡ßOB=2£¬OA=4£¬
¡àOB=
OA£¬
¡à¡ÏBAO=30¡ã£¬
¡àAB=2
£¬
¡àBD=
£¬AD=3£¬ÔòOD=OA-AD=1£¬
¡àB£¨-1£¬
£©£®
ÉèÖ±ÏßABµÄ½âÎöʽΪ£ºy=kx+b£¨k¡Ù0£©£®°ÑA£¨-4£¬0£©£¬B£¨-1£¬
£©´úÈ룬µÃ
£¬
½âµÃ£¬
£¬
¡àÖ±ÏßABµÄ½âÎöʽΪ£ºy=
x+
£®
¡ßÖ±ÏßAB¡äÓëÖ±ÏßAB¹ØÓÚxÖá¶Ô³Æ£¬
¡àÖ±ÏßAB¡äµÄ½âÎöʽΪ£ºy=-
x-
£®
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄÖ±ÏßABµÄ·½³ÌΪy=
x+
»òy=-
x-
£»
£¨3£©Õý·½ÐÎABCDµÄÃæ»ý´æÔÚ×î´óÖµ»ò×îСֵ£®ÀíÓÉÈçÏ£º
Èçͼ3£¬ÔÚÖ±½Ç¡÷OBDÖУ¬OB=2£¬OD=|m|£¬Ôò¸ù¾Ý¹´¹É¶¨ÀíÇóµÃBD2=OB2-OD2=4-m2£®
ÔÚÖ±½Ç¡÷ABDÖУ¬¸ù¾Ý¹´¹É¶¨Àí£¬µÃµ½AB2=AD2+BD2=£¨4+m£©2+4-m2=8m+20£®¼´S=8m+20£®
¡ß-2¡Üm¡Ü2£¬
¡à4¡ÜS¡Ü36£®¼´µ±m=2ʱ£¬S×î´óÖµ=36£»µ±m=-2ʱ£¬S×îСֵ=4£®
×ÛÉÏËùÊö£¬SÓëmµÄº¯Êý¹ØÏµÊ½ÊÇS=8m+20£¬µ±m=2ʱ£¬S×î´óÖµ=36£»µ±m=-2ʱ£¬S×îСֵ=4£®
¡àOA=4£¬OB=2£¬AB=BC£¬¡ÏABC=90¡ã£®
¹ýµãC×÷CE¡ÍyÖáÓÚµãE£¬Ôò¡Ï1=¡Ï2£¨Í¬½ÅµÄÓà½ÇÏàµÈ£©£®
¡ßÔÚ¡÷ABOÓë¡÷BCEÖУ¬
|
¡à¡÷ABO¡Õ¡÷BCE£¨ASA£©£¬
¡àOB=EC=2£¬OA=EB=4£¬
¡àOE=OB+EB=2+4=6£¬
¡àC£¨-2£¬6£©£»
£¨2£©Èçͼ3£¬Á¬½ÓOB£¬¹ýµãB×÷BD¡ÍOAÓÚµãD£®
¡ßABÊÇ¡ÑOµÄÇÐÏߣ¬
¡à¡ÏABO=90¡ã£®
¡ßOB=2£¬OA=4£¬
¡àOB=
| 1 |
| 2 |
¡à¡ÏBAO=30¡ã£¬
¡àAB=2
| 3 |
¡àBD=
| 3 |
¡àB£¨-1£¬
| 3 |
ÉèÖ±ÏßABµÄ½âÎöʽΪ£ºy=kx+b£¨k¡Ù0£©£®°ÑA£¨-4£¬0£©£¬B£¨-1£¬
| 3 |
|
½âµÃ£¬
|
¡àÖ±ÏßABµÄ½âÎöʽΪ£ºy=
| ||
| 3 |
4
| ||
| 3 |
¡ßÖ±ÏßAB¡äÓëÖ±ÏßAB¹ØÓÚxÖá¶Ô³Æ£¬
¡àÖ±ÏßAB¡äµÄ½âÎöʽΪ£ºy=-
| ||
| 3 |
4
| ||
| 3 |
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄÖ±ÏßABµÄ·½³ÌΪy=
| ||
| 3 |
4
| ||
| 3 |
| ||
| 3 |
4
| ||
| 3 |
£¨3£©Õý·½ÐÎABCDµÄÃæ»ý´æÔÚ×î´óÖµ»ò×îСֵ£®ÀíÓÉÈçÏ£º
Èçͼ3£¬ÔÚÖ±½Ç¡÷OBDÖУ¬OB=2£¬OD=|m|£¬Ôò¸ù¾Ý¹´¹É¶¨ÀíÇóµÃBD2=OB2-OD2=4-m2£®
ÔÚÖ±½Ç¡÷ABDÖУ¬¸ù¾Ý¹´¹É¶¨Àí£¬µÃµ½AB2=AD2+BD2=£¨4+m£©2+4-m2=8m+20£®¼´S=8m+20£®
¡ß-2¡Üm¡Ü2£¬
¡à4¡ÜS¡Ü36£®¼´µ±m=2ʱ£¬S×î´óÖµ=36£»µ±m=-2ʱ£¬S×îСֵ=4£®
×ÛÉÏËùÊö£¬SÓëmµÄº¯Êý¹ØÏµÊ½ÊÇS=8m+20£¬µ±m=2ʱ£¬S×î´óÖµ=36£»µ±m=-2ʱ£¬S×îСֵ=4£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËÔ²µÄÇÐÏßµÄÐÔÖÊ£¬´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ£¬Õý·½ÐÎÃæ»ýµÄÇ󷨵È֪ʶµã£®½âÌâʱ£¬³ä·ÖÌåÏÖÁË¡°Êýѧ½áºÏ¡±Êýѧ˼ÏëµÄÓÅÊÆ£¬Ê¹³éÏóµÄÎÊÌâ±äµÃÐÎÏ󻯣¬½µµÍÁËÌâµÄÄѶÈÓëÌݶȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿