题目内容

已知如图,AB∥CD∥EF,点M、N、P分别在AB、CD、EF上,NQ平分∠MNP.

(1)若∠AMN=50º,∠EPN=70º,分别求∠MNP,∠DNQ的度数;

(2)若∠AMN=度,∠EPN=度,请直接写出∠DNQ的度数(用含的代数式表示);

(3)试探究:∠DNQ与∠AMN,∠EPN之间的数量关系,并说明理由.

 

【答案】

(1)∠DNQ=10°;(2)∠DNQ=度;(3)

【解析】

试题分析:(1)依题意知,∵AB∥CD∥EF,

∴∠MND=∠AMN=50°,∠DNP=∠EPN=70°,

∴∠MNP=∠MND+∠DNP=50°+70°=120°,

而NQ平分∠MNP,

∴∠MNQ=∠MNP=×120°=60°,

∴∠DNQ=∠MNQ-∠MND=70°-60°=10°,

所以∠MNP、∠DNQ的度数分别为140°,10° 

(2)由(1)可得∠DNQ =度   

(3)由(1)得∠MNP=∠MND+∠DNP=∠AMN+∠EPN,

∴∠MNQ=∠MNP=(∠AMN+∠EPN),

∴∠DNQ=∠MNQ-∠MND=(∠AMN+∠EPN)-∠AMN,

∠DNQ=(∠END-∠AMN).. 

考点:平行线的性质

点评:本题难度中等,主要考查了平行线的性质:两直线平行,内错角相等.也考查了角平分线的定义.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网