题目内容
阅读理解并回答问题.(1)观察下列各式:
| 1 |
| 2 |
| 1 |
| 1×2 |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 12 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 20 |
| 1 |
| 4×5 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 30 |
| 1 |
| 5×6 |
| 1 |
| 5 |
| 1 |
| 6 |
请你猜想出表示(1)中的特点的一般规律,用含x(x表示整数)的等式表示出来
| 1 |
| x(x+1) |
(2)请利用上述规律计算:(要求写出计算过程)
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| (n-1)n |
| 1 |
| n(n+1) |
(3)请利用上述规律,解方程
| 1 |
| (x-4)(x-3) |
| 1 |
| (x-3)(x-2) |
| 1 |
| (x-2)(x-1) |
| 1 |
| (x-1)x |
| 1 |
| x(x+1) |
| 1 |
| x+1 |
分析:(1)
=
=
-
,
=
=
-
,
=
=
-
,
=
=
-
,
=
=
-
,…则
=
-
.
(2)将
+
+
+…+
+
变形为
-
+
-
+
-
…+
-
+
-
是解题的关键.
(3)根据(1)的规律原方程变形为
-
=
是解题的关键.
| 1 |
| 2 |
| 1 |
| 1×2 |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 12 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 20 |
| 1 |
| 4×5 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 30 |
| 1 |
| 5×6 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| x(x+1) |
| 1 |
| x |
| 1 |
| x+1 |
(2)将
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| (n-1)n |
| 1 |
| n(n+1) |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n+1 |
(3)根据(1)的规律原方程变形为
| 1 |
| x-4 |
| 1 |
| x+1 |
| 1 |
| x+1 |
解答:解:(1)
=
-
.
(2)
+
+
+…+
+
=
-
+
-
+
-
…+
-
+
-
=1-
=
.
(3)
+
+
+
+
=
则
-
=
两边同时乘以(x-4)(x+1),得
x+1-(x-4)=x-4
解得x=9
经检验x=9是原方程的解.
| 1 |
| x(x+1) |
| 1 |
| x |
| 1 |
| x+1 |
(2)
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| (n-1)n |
| 1 |
| n(n+1) |
=
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
(3)
| 1 |
| (x-4)(x-3) |
| 1 |
| (x-3)(x-2) |
| 1 |
| (x-2)(x-1) |
| 1 |
| (x-1)x |
| 1 |
| x(x+1) |
| 1 |
| x+1 |
则
| 1 |
| x-4 |
| 1 |
| x+1 |
| 1 |
| x+1 |
两边同时乘以(x-4)(x+1),得
x+1-(x-4)=x-4
解得x=9
经检验x=9是原方程的解.
点评:通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为
=
-
.
| 1 |
| x(x+1) |
| 1 |
| x |
| 1 |
| x+1 |
练习册系列答案
相关题目