题目内容
如图,已知△ABC是等边三角形,点D、E在BC的延长线上,G是AC上一点,且CG=CD,F是GD上一点,且DF=DE,则∠E= 度.
如图所示,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有( )
A.4个 B.3个 C.2个 D.1个
如图抛物线与轴交于A(1,0),两点
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交轴于点,在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由。
如图,在⊙O中,若C是的中点,则图中与相等的角还有( )
A. 1个 B. 3个 C. 4个 D. 5个
如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.
(1)求证:△ABE≌DCE;
(2)当∠AEB=50°,求∠EBC的度数?
已知一个n边形的内角和是其外角和的5倍,则n=__________.
如果a:b=1:2,那么= ( )
A.-2 B.2 C.3 D.-3
已知(a+1)2+|b-2|=0,则ab+1的值等于__________.
如图1,在等边△ABC的边AC的延长线上取一点E,以CE为边作等边△CDE,使它
与△ABC位于直线AE的同侧.
(1)同学们对图1进行了热烈的讨论,猜想出如下结论,你认为正确的有______(填序号).
①△ACD≌△BCE;②△ACP≌△BCQ; ③△DCP≌△ECQ;
④∠ARB=60°; ⑤△CPQ是等边三角形.
(2)当等边△CED绕C点旋转一定角度后(如图2),(1)中有哪些结论还是成立的?
并对正确的结论分别予以证明.