ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±ÏßAB£ºy=-| 1 | 2 |
£¨1£©ÇóµãA¡¢B¡¢CµÄ×ø±ê£»
£¨2£©ÇóÅ×ÎïÏߵĽâÎöʽ¼°¶¥µã×ø±ê£»
£¨3£©Å×ÎïÏߵĶԳÆÖáÓëxÖá½»ÓÚµãM£¬½«¡÷ABOÈÆµãMÐýת£¬Ê¹µÃµãAµÄ¶ÔÓ¦µãÂäÔÚÅ×ÎïÏßÉÏ£¬ÊÔÇó³öAµÄ¶ÔÓ¦µãµÄ×ø±ê£»£¨Ö±½Óд³ö½á¹û£©
£¨4£©¡÷ABOÈÆÆ½ÃæÄÚµÄijһµãÐýת180¡ãºó£¬ÊÇ·ñ´æÔÚA¡¢BµÄ¶ÔÓ¦µãͬʱÂäÔÚÅ×ÎïÏßÉÏ£¿Èô´æÔÚ£¬Çó³ö¶ÔÓ¦µãA¡ä¡¢B¡äºÍÐýתÖÐÐĵÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾ÝÖ±ÏßABµÄ½âÎöʽ£¬¿ÉÈ·¶¨A¡¢BµÄ×ø±ê£¬ÓÉÓÚBC=AB£¬¼´BÊÇACµÄÖе㣬¼´¿ÉÇóµÃµãCµÄ×ø±ê£®
£¨2£©½«A¡¢CµÄ×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬Í¨¹ýÁªÁ¢·½³Ì×é¼´¿ÉÇóµÃ´ý¶¨ÏµÊýµÄÖµ£®
£¨3£©ÈôµãAµÄ¶ÔÓ¦µãÂäÔÚÅ×ÎïÏßÉÏ£¬ÄÇôÕâЩµãµ½MµÄ¾àÀë¶¼µÈÓÚMAµÄ³¤£¬¿ÉÉè³öµãA¶ÔÓ¦µãµÄ×ø±ê£¬È»ºó¸ù¾Ý×ø±êϵÖÐÁ½µã¼äµÄ¾àÀ빫ʽÁз½³ÌÇó½â£®£¨´Ë·½³ÌÊǸö¸ß´Î·½³Ì£¬¿ÉÓû»Ôª·¨Çó½â£©
£¨4£©¼ÙÉè´æÔÚ·ûºÏÌõ¼þµÄÐýתÖÐÐÄ£¬ÓÉÓÚÐýתµÄ¶ÈÊýΪ180¡ã£¬ÄÇôÐýתºóA¡äB¡ä¡ÎAB£¬¿ÉÉè³öÐýתÖÐÏßµÄ×ø±ê£¬È»ºó±íʾ³öA¡ä¡¢B¡äµÄ×ø±ê£¬ÓÉÓÚA¡ä¡¢B¡ä¶¼ÔÚÅ×ÎïÏßµÄͼÏóÉÏ£¬¿É½«ËüÃÇ´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬¼´¿ÉÇóµÃA¡ä¡¢B¡äÒÔ¼°ÐýתÖÐÐĵÄ×ø±ê£®
£¨2£©½«A¡¢CµÄ×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬Í¨¹ýÁªÁ¢·½³Ì×é¼´¿ÉÇóµÃ´ý¶¨ÏµÊýµÄÖµ£®
£¨3£©ÈôµãAµÄ¶ÔÓ¦µãÂäÔÚÅ×ÎïÏßÉÏ£¬ÄÇôÕâЩµãµ½MµÄ¾àÀë¶¼µÈÓÚMAµÄ³¤£¬¿ÉÉè³öµãA¶ÔÓ¦µãµÄ×ø±ê£¬È»ºó¸ù¾Ý×ø±êϵÖÐÁ½µã¼äµÄ¾àÀ빫ʽÁз½³ÌÇó½â£®£¨´Ë·½³ÌÊǸö¸ß´Î·½³Ì£¬¿ÉÓû»Ôª·¨Çó½â£©
£¨4£©¼ÙÉè´æÔÚ·ûºÏÌõ¼þµÄÐýתÖÐÐÄ£¬ÓÉÓÚÐýתµÄ¶ÈÊýΪ180¡ã£¬ÄÇôÐýתºóA¡äB¡ä¡ÎAB£¬¿ÉÉè³öÐýתÖÐÏßµÄ×ø±ê£¬È»ºó±íʾ³öA¡ä¡¢B¡äµÄ×ø±ê£¬ÓÉÓÚA¡ä¡¢B¡ä¶¼ÔÚÅ×ÎïÏßµÄͼÏóÉÏ£¬¿É½«ËüÃÇ´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬¼´¿ÉÇóµÃA¡ä¡¢B¡äÒÔ¼°ÐýתÖÐÐĵÄ×ø±ê£®
½â´ð£º½â£º£¨1£©¡ßÖ±ÏßAB£ºy=-
x-1£¬µ±x=0ʱ£¬y=1£»µ±y=0ʱ£¬x=-2£»
¡àA£¨-2£¬0£©£¬B£¨0£¬-1£©£¬
ÓÖ¡ßAB=BC£¬¼´BÊÇACµÄÖе㣬
¡àC£¨2£¬-2£©£®£¨3·Ö£©
£¨2£©¡ßy=ax2+bx-3¹ýA£¨-2£¬0£©¡¢C£¨2£¬-2£©
¡à
£¨5·Ö£©
½âµÃ£ºa=
£¬b=-
£®
¡ày=
x2-
x-3£®£¨7·Ö£©£¬
¶¥µã×ø±ê£¨
£¬-
£©

£¨3£©ÓÉ£¨2£©Öª£¬Å×ÎïÏߵĶԳÆÖáΪx=
£¬ÔòM£¨
£¬0£©£»
ÉèµãAµÄ¶ÔÓ¦µãµÄ×ø±êΪ£¨x£¬
x2-
x-3£©£¬¸ù¾ÝÐýתµÄÐÔÖÊ£¬ÓÐ
£¨x-
£©2+£¨
x2-
x-3£©2=£¨-2-
£©2£¬
¼´£¨x-
£©2+[
£¨x-
£©2-
]2=
£¬
É裨x-
£©2=m£¬ÔòÓУº
m+£¨
m-
£©2=
£¬
½âµÃm=
£¬m=
£»
½«mµÄÖµ´úÈ루x-
£©2=mÖУ¬¿ÉÇóµÃ£º
A1£¨-2£¬0£©£¨ÉáÈ¥£©¡¢A2£¨-1£¬-2£©¡¢A3£¨2£¬-2£©¡¢A4£¨3£¬0£©£®£¨11·Ö£©
£¨4£©Ðýתºó£¬A¡äB¡ä¡ÎAB£¬
ÉèO¡ä£¨a£¬b£©£¬¡÷AOB¡Õ¡÷A¡äO¡äB¡ä£¬ÔòA¡ä£¨a+2£¬b£©£¬B¡ä£¨a£¬b+1£©£¬´úÈë
y=
x2-
x-3ÖУ¬
½âµÃ£ºa=-1£¬b=-3£®
ÔòA¡ä£¨1£¬-3£©£¬B¡ä£¨-1£¬-2£©ÐýתÖÐÐÄ£¨-
£¬-
£©£®£¨14·Ö£©
| 1 |
| 2 |
¡àA£¨-2£¬0£©£¬B£¨0£¬-1£©£¬
ÓÖ¡ßAB=BC£¬¼´BÊÇACµÄÖе㣬
¡àC£¨2£¬-2£©£®£¨3·Ö£©
£¨2£©¡ßy=ax2+bx-3¹ýA£¨-2£¬0£©¡¢C£¨2£¬-2£©
¡à
|
½âµÃ£ºa=
| 1 |
| 2 |
| 1 |
| 2 |
¡ày=
| 1 |
| 2 |
| 1 |
| 2 |
¶¥µã×ø±ê£¨
| 1 |
| 2 |
| 25 |
| 8 |
£¨3£©ÓÉ£¨2£©Öª£¬Å×ÎïÏߵĶԳÆÖáΪx=
| 1 |
| 2 |
| 1 |
| 2 |
ÉèµãAµÄ¶ÔÓ¦µãµÄ×ø±êΪ£¨x£¬
| 1 |
| 2 |
| 1 |
| 2 |
£¨x-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
¼´£¨x-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 25 |
| 8 |
| 25 |
| 4 |
É裨x-
| 1 |
| 2 |
m+£¨
| 1 |
| 2 |
| 25 |
| 8 |
| 25 |
| 4 |
½âµÃm=
| 9 |
| 4 |
| 25 |
| 4 |
½«mµÄÖµ´úÈ루x-
| 1 |
| 2 |
A1£¨-2£¬0£©£¨ÉáÈ¥£©¡¢A2£¨-1£¬-2£©¡¢A3£¨2£¬-2£©¡¢A4£¨3£¬0£©£®£¨11·Ö£©
£¨4£©Ðýתºó£¬A¡äB¡ä¡ÎAB£¬
ÉèO¡ä£¨a£¬b£©£¬¡÷AOB¡Õ¡÷A¡äO¡äB¡ä£¬ÔòA¡ä£¨a+2£¬b£©£¬B¡ä£¨a£¬b+1£©£¬´úÈë
y=
| 1 |
| 2 |
| 1 |
| 2 |
½âµÃ£ºa=-1£¬b=-3£®
ÔòA¡ä£¨1£¬-3£©£¬B¡ä£¨-1£¬-2£©ÐýתÖÐÐÄ£¨-
| 1 |
| 2 |
| 3 |
| 2 |
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨ÒÔ¼°Í¼ÐεÄÐýת±ä»¯£¬ÊìÁ·ÕÆÎÕͼÐÎÐýתµÄÐÔÖÊÊǽâ¾ö´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿