题目内容
分解因式:=
x(x+2)(x-2)
如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_____米.
已知圆锥的侧面展开图的圆心角为120°,则这个圆锥的侧面积是底面积的( )
A.2倍 B.3倍 C. D.
随着人民生活水平的不断提高,萧山区家庭轿车的拥有量逐年增加.据统计,家景园小区2008年底拥有家庭轿车144辆,2010年底家庭轿车的拥有量达到225辆.
(1) 若该小区2008年底到2010年底家庭轿车拥有量的年平均增长率都相同,求该小区到2011年底家庭轿车将达到多少辆?
(2) 为了缓解停车矛盾,该小区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的4.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.
如图,△ABC内接于⊙O,∠C=45°,AB=2,则⊙O的半径为( )
A.1 B. C.2 D.
正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线(k>0)和x轴上,已知点B1(1,1),B2(3,2),则Bn的坐标是_____ _________.
、两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往城,乙车驶往城,甲车在行驶过程中速度始终不变.甲车距城高速公路入口处的距离(千米)与行驶时间(时)之间的关系如图.
(1)求关于的表达式;
(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为(千米).请直接写出关于的表达式;
(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度.在下图中画出乙车离开城高速公路入口处的距离(千米)与行驶时间(时)之间的函数图象.
已知直线,,,若无论取何值,总取、、中的最小值,则的最大值为 。
点P(x,y)在第三象限,且点P到x轴、y轴的距离分别为5,3,则P点的坐标为( )
A.(-5,3) B.(3,-5) C.(-3,-5) D.(5,-3)