题目内容
如图所示的几何体是一个正三棱柱,以下不属于其三视图的是( )
A. B. C. D.
如图,二次函数的图象关于y轴对称且交y轴负半轴于点C,与x轴交于点A、B,已知AB=6,OC=4,⊙C的半径为,P为⊙C上一动点.
(1)求出二次函数的解析式;
(2)是否存在点P,使得△PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)连接PB,若E为PB的中点,连接OE,则OE的最大值是多少?
如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为( )
A. 4 B. 8 C. 16 D. 64
计算:.
【答案】1
【解析】分析:按照实数的运算顺序进行运算即可.
详【解析】原式
点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及绝对值,熟练掌握各个知识点是解题的关键.
【题型】解答题【结束】16
解不等式组:, 并把解集在数轴上表示出来.
由于各地雾霾天气越来越严重,2018年春节前夕,安庆市政府号召市民,禁放烟花炮竹.学校向3000名学生发出“减少空气污染,少放烟花爆竹”倡议书,并围绕“A类:不放烟花爆竹;B类:少放烟花爆竹;C类:使用电子鞭炮;D类:不会减少烟花爆竹数量”四个选项进行问卷调查(单选),并将对100名学生的调查结果绘制成统计图(如图所示).根据抽样结果,请估计全校“使用电子鞭炮”的学生有( )
A. 900名 B. 1050名 C. 600名 D. 450名
【答案】D
【解析】分析:用全校学生的人数乘以“使用电子鞭炮”的百分比即可求出答案.
详【解析】100名学生中“使用电子鞭炮”的学生有人,“使用电子鞭炮”的百分比为:
全校“使用电子鞭炮”的学生有:人.
故选D.
点睛:考查用样本估计总体,从条形统计图中得到“使用电子鞭炮”的学生人数是解题的关键.
【题型】单选题【结束】9
如图,在□ABCD中,E、F分别为BC、AD的中点,AE、CF分别交BD于点M、N,则四边形 AMCN与□ABCD的面积比为( )
已知:A是以BC为直径的圆上的一点,BE是⊙O的切线,CA的延长线与BE交于E点,F是BE的中点,延长AF,CB交于点P.
(1)求证:PA是⊙O的切线;
(2)若AF=3,BC=8,求AE的长.
如图,△ABC中,AB=AC=2,∠B=30°,点D在BC上,过点D作DE⊥BC,交BA或其延长线于点E,过点E作EF⊥BA交AC或其延长线于点F,连接DF.若DF⊥AC,则BD=_____.
昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.
根据下面图象,回答下列问题:
(1)求线段AB所表示的函数关系式;
(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?
如图所示,在矩形ABCD中,E是BC的中点,AE=AD=2,则AC的长是( )
A. B.4 C.2 D.